skip to main content
research-article

Using Nesterov's Method to Accelerate Multibody Dynamics with Friction and Contact

Published:08 May 2015Publication History
Skip Abstract Section

Abstract

We present a solution method that, compared to the traditional Gauss-Seidel approach, reduces the time required to simulate the dynamics of large systems of rigid bodies interacting through frictional contact by one to two orders of magnitude. Unlike Gauss-Seidel, it can be easily parallelized, which allows for the physics-based simulation of systems with millions of bodies. The proposed accelerated projected gradient descent (APGD) method relies on an approach by Nesterov in which a quadratic optimization problem with conic constraints is solved at each simulation time step to recover the normal and friction forces present in the system. The APGD method is validated against experimental data, compared in terms of speed of convergence and solution time with the Gauss-Seidel and Jacobi methods, and demonstrated in conjunction with snow modeling, bulldozer dynamics, and several benchmark tests that highlight the interplay between the friction and cohesion forces.

References

  1. V. Acary, F. Cadoux, C. Lemarechal, and J. Malick. 2011. A formulation of the linear discrete Coulomb friction problem via convex optimization. ZAMM- J. Appl. Math. Mechan./Zeitschrift fur Angewandte Mathematik und Mechanik 91, 2, 155--175.Google ScholarGoogle ScholarCross RefCross Ref
  2. M. A. Ambroso, C. R. Santore, A. R. Abate, and D. J. Durian. 2005. Penetration depth for shallow impact cratering. Phys. Rev. E71, 051305.Google ScholarGoogle Scholar
  3. E. Andersen and K. Andersen. 2000. The mosek interior point optimizer for linear programming: An implementation of the homogeneous algorithm. In High Performance Optimization, H. Frenk, K. Roos, T. Terlaky, and S. Zhang, Eds., Springer, 197--232.Google ScholarGoogle Scholar
  4. E. Andersen, C. Roos, and T. Terlaky. 2003. On implementing a primal-dual interior-point method for conic quadratic optimization. Math. Program. 95, 2, 249--277.Google ScholarGoogle ScholarCross RefCross Ref
  5. M. Anitescu. 2006. Optimization-based simulation of nonsmooth rigid multibody dynamics. Math. Program. 105, 1, 113--143. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. M. Anitescu, J. F. Cremer, and F. A. Potra. 1996. Formulating 3D contact dynamics problems. Mechan. Struct. Mach. 24, 4, 405--437.Google ScholarGoogle ScholarCross RefCross Ref
  7. M. Anitescu and G. D. Hart. 2004. A constraint-stabilized time-stepping approach for rigid multibody dynamics with joints, contact and friction. Int. J. Numer. Meth. Engin. 60, 14, 2335--2371.Google ScholarGoogle ScholarCross RefCross Ref
  8. M. Anitescu and A. Tasora. 2010. An iterative approach for cone complementarity problems for nonsmooth dynamics. Comput. Optim. Appl. 47, 2, 207--235. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. A. Beck and M. Teboulle. 2009. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imag. Sci. 2, 1, 183--202. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. S. R. Becker, E. J. Candes, and M. C. Grant. 2011. Templates for convex cone problems with applications to sparse signal recovery. Math. Program. Comput. 3, 3, 165--218.Google ScholarGoogle ScholarCross RefCross Ref
  11. F. Bertails-Descoubes, F. Cadoux, G. Daviet, and V. Acary. 2011. A nonsmooth Newton solver for capturing exact Coulomb friction in fiber assemblies. ACM Trans. Graph. 30, 1, 6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. D. Bertsekas. 1976. On the Goldstein-Levitin-Polyak gradient projection method. IEEE Trans. Autom. Control 21, 2, 174--184.Google ScholarGoogle ScholarCross RefCross Ref
  13. K. Bodin, C. Lacoursiere, and M. Servin. 2012. Constraint fluids. IEEE Trans. Visual. Comput. Graph. 18, 3, 516--526. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. O. Bonnefon and G. Daviet. 2011. Quartic formulation of Coulomb 3D frictional contact. Tech. rep. Rapport Technique RT-0400, INRIA.Google ScholarGoogle Scholar
  15. R. Bridson, R. Fedkiw, and J. Anderson. 2002. Robust treatment of collisions, contact and friction for cloth animation. ACM Trans. Graph. 21, 3, 594--603. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. N. V. Brilliantov, F. Spahn, J.-M. Hertzsch, and T. Poschel. 1996. Model for collisions in granular gases. Phys. Rev. E53, 5, 5382.Google ScholarGoogle Scholar
  17. F. Cadoux. 2009. An optimization-based algorithm for Coulomb's frictional contact. ESAIM: Proc. 27, 54--69.Google ScholarGoogle ScholarCross RefCross Ref
  18. Cauchy, A. 1847. Methode generale pour la resolution des systemes d'equations simultanees. Comput. Rend. Sci. Paris 25, 1847, 536--538.Google ScholarGoogle Scholar
  19. R. W. Cottle, J.-S. Pang, and R. E. Stone. 2009. The Linear Complementarity Problem. Academic Press, New York.Google ScholarGoogle Scholar
  20. P. Cundall. 1971. A computer model for simulating progressive large-scale movements in block rock mechanics. In Proceedings of the International Symposium on Rock Mechanics.Google ScholarGoogle Scholar
  21. P. Cundall. 1988. Formulation of a three-dimensional distinct element model-Part I. A scheme to detect and represent contacts in a system composed of many polyhedral blocks. Int. J. Rock Mechan. Mining Sci. Geomechan. Abstr. 25, 3, 107--116.Google ScholarGoogle ScholarCross RefCross Ref
  22. P. Cundall and O. Strack. 1979. A discrete element model for granular assemblies. Geotechniq. 29, 47--65.Google ScholarGoogle ScholarCross RefCross Ref
  23. G. Daviet, F. Bertails-Descoubes, and L. Boissieux. 2011. A hybrid iterative solver for robustly capturing Coulomb friction in hair dynamics. ACM Trans. Graph. 30, 139. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. G. De Saxce and Z.-Q. Feng. 1998. The bipotential method: A constructive approach to design the complete contact law with friction and improved numerical algorithms. Math. Comput. Model. 28, 4, 225--245. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. R. Delannay, M. Louge, P. Richard, N. Taberlet, and A. Valance. 2007. Towards a theoretical picture of dense granular flows down inclines. Nature Mater. 6, 2, 99--108.Google ScholarGoogle ScholarCross RefCross Ref
  26. J. W. Demmel. 2011. SuperLu users' guide. http://crd.lbl.gov/∼xiaoye/SuperLU/superlu_ug.pdf.Google ScholarGoogle Scholar
  27. S. P. Dirkse and M. C. Ferris. 1995. The PATH solver: A nonmonotone stabilization scheme for mixed complementarity problems. Optim. Meth. Softw. 5, 2, 123--156.Google ScholarGoogle ScholarCross RefCross Ref
  28. K. Erleben. 2007. Velocity-based shock propagation for multibody dynamics animation. ACM Trans. Graph. 26, 2, 12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. A. Filippov. 1967. Classical solutions of differential equations with multi-valued right-hand side. SIAM J. Control 5, 4, 609--621.Google ScholarGoogle ScholarCross RefCross Ref
  30. D. M. Flickinger, J. Williams, and J. Trinkle. 2013. What's wrong with collision detection in multibody dynamic simulation? In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA'13). 959--964.Google ScholarGoogle Scholar
  31. C. Glocker and F. Pfeiffer. 2006. An LCP-approach for multibody systems with planar friction. In Proceedings of the International Symposium on Contact Mechanics (CMIS'06). 13--20.Google ScholarGoogle Scholar
  32. E. Guendelman, R. Bridson, and R. Fedkiw. 2003. Nonconvex rigid bodies with stacking. ACM Trans. Graph. 22, 871--878. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. E. J. Haug. 1989. Computer-Aided Kinematics and Dynamics of Mechanical Systems, Vol. 1. Prentice-Hall, Englewood Cliffs, NJ. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. T. Heyn. 2013. On the modeling, simulation, and visualization of many-body dynamics problems with friction and contact. Ph.D. thesis. Department of Mechanical Engineering, University of Wisconsin-Madison.Google ScholarGoogle Scholar
  35. T. Heyn, M. Anitescu, A. Tasora, and D. Negrut. 2013. Using Krylov subspace and spectral methods for solving complementarity problems in many-body contact dynamics simulation. Int. J. Numer. Meth. Engin. 95, 7, 541--561.Google ScholarGoogle ScholarCross RefCross Ref
  36. Intel. 2013. The Intel math kernel library sparse matrix vector multiply format prototype package. http://software.intel.com/en-us/article/the-intel-math-kernel-library-sparse-matrix-vector-multiply-format-prot otype-package.Google ScholarGoogle Scholar
  37. H. M. Jaeger, S. R. Nagel, and R. P. Behringer. 1996. Granular solids, liquids, and gases. Rev. Mod. Phys. 68, 1259--1273.Google ScholarGoogle ScholarCross RefCross Ref
  38. K. L. Johnson. 1987. Contact Mechanics. Cambridge University Press.Google ScholarGoogle Scholar
  39. C. Kane, E. Repetto, M. Ortiz, and J. Marsden. 1999. Finite element analysis of nonsmooth contact. Comput. Meth. Appl. Mechan. Engin. 180, 1, 1--26.Google ScholarGoogle ScholarCross RefCross Ref
  40. D. M. Kaufman and D. K. Pai. 2012. Geometric numerical integration of inequality constrained, nonsmooth Hamiltonian systems. SIAM J. Sci. Comput. 34, 5, A2650--A2703.Google ScholarGoogle ScholarCross RefCross Ref
  41. A. Li, R. Serban, and D. Negrut. 2013. A SPIKE-based approach for the parallel solution of sparse linear systems on GPU cards. Tech. rep. TR-2013-05, University of Wisconsin-Madison. http://sbel.wisc.edu/documents/TR-2013-05.pdf.Google ScholarGoogle Scholar
  42. S. Luding. 2005. Molecular dynamics simulations of granular materials. In The Physics of Granular Media, H. Hinrichsen and D. E. Wolf, Eds., Wiley-VCH, Weinheim, Germany. 299--324.Google ScholarGoogle Scholar
  43. H. Mazhar, J. Bollman, E. Forti, A. Praeger, T. Osswald, and D. Negrut, 2013a. Studying the effect of powder geometry of the selective laser sintering process. Tech. rep. TR-2013-03, Simulation-Based Engineering Laboratory, University of Wisconsin-Madison. http://sbel.wisc.edu/documents/TR-2013-03.pdf.Google ScholarGoogle Scholar
  44. H. Mazhar, T. Heyn, A. Pazouki, D. Melanz, A. Seidl, A. Bartholomew, A. Tasora, and D. Negrut. 2013b. Chrono: A parallel multi-physics library for rigid-body, flexible-body, and fluid dynamics. Mechan. Sci. 4, 1, 49--64.Google ScholarGoogle ScholarCross RefCross Ref
  45. H. Mazhar, D. Melanz, M. Ferris, and D. Negrut. 2014a. An analysis of several methods for handling hard-sphere frictional contact in rigid multibody dynamics. Tech. rep. TR-2014-11, Simulation-Based Engineering Laboratory, University of Wisconsin-Madison. http://sbel.wisc.edu/documents/TR-2014-11.pdf.Google ScholarGoogle Scholar
  46. H. Mazhar, J. Schneider, and D. Negrut. 2014b. Preliminary results for helical anchoring project. Tech. rep. TR-2014-10, Simulation-Based Engineering Laboratory. University of Wisconsin-Madison, http://sbel.wisc.edu/documents/TR-2014-10.pdf.Google ScholarGoogle Scholar
  47. H. Mazhar, T. Heyn, and D. Negrut. 2011. A scalable parallel method for large collision detection problems. Multibody Syst. Dynam. 26, 37--55.Google ScholarGoogle ScholarCross RefCross Ref
  48. J. J. Moreau and M. Jean. 1996. Numerical treatment of contact and friction: The contact dynamics method. In Proceedings of the 3rd Biennial Joint Conference on Engineering Systems and Analysis (ESDA'96). 201--208.Google ScholarGoogle Scholar
  49. A. Nemirovsky and D. B. Yudin. 1983. Problem Complexity and Method Efficiency in Optimization. John Wiley and Sons.Google ScholarGoogle Scholar
  50. Y. Nesterov. 2003. A method of solving a convex programming problem with convergence rate O (1/k2). Soviet Math. Doklady 27, 2, 372--376.Google ScholarGoogle Scholar
  51. Y. Nesterov. 2003. Introductory Lectures on Convex Optimization: A Basic Course, Vol. 87. Springer. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. B. O'Donoghue and E. Candes. 2012. Adaptive restart for accelerated gradient schemes. ArXiv e-prints.Google ScholarGoogle Scholar
  53. T. Poschel and T. Schwager. 2005. Computational Granular Dynamics: Models and Algorithms. Springer.Google ScholarGoogle Scholar
  54. T. M. Preclik, K. I. Iglberger, and U. Rude. 2009. Iterative rigid multi-body dynamics. In Proceedings of the Thematic Conference on Multibody Dynamics (ECCOMAS'09).Google ScholarGoogle Scholar
  55. T. M. Preclik and U. Rude. 2011. Solution existence and non-uniqueness of Coulomb friction. Tech. rep. 4, Friedrich-Alexander University Erlangen-Nurnberg, Institut fur Informatik, Nurnberg, Germany.Google ScholarGoogle Scholar
  56. O. Schenk and K. Gartner. 2004. Solving unsymmetric sparse systems of linear equations with Pardiso. Future Generat. Comput. Syst. 20, 3, 475--487. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Z. Shojaaee, M. R. Shaebani, L. Brendel, J. Toeroek, and D. E. Wolf. 2012. An adaptive hierarchical domain decomposition method for parallel contact dynamics simulations of granular materials. J. Comput. Phys. 231, 2, 612--628. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. B. Smith, D. M. Kaufman, G. Vouga, R. Tamstorf, and E. Grinspun. 2012. Reflections on simultaneous impact. ACM Trans. Graph. 31, 4, 106:1--106:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. D. E. Stewart. 2000. Rigid-body dynamics with friction and impact. SIAM Rev. 42, 1, 3--39. Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. D. E. Stewart and J. C. Trinkle. 1996. An implicit time-stepping scheme for rigid-body dynamics with inelastic collisions and Coulomb friction. Int. J. Numer. Meth. Engin. 39, 2673--2691.Google ScholarGoogle ScholarCross RefCross Ref
  61. B.-Y. Su and K. Keutzer. 2012. clSpMV: A cross-platform OpenCL SpMV framework on GPUs. In Proceedings of the 26th ACM International Conference on Supercomputing (ICS'12). ACM Press, New York, 353--364. Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. A. Tasora and M. Anitescu. 2013. A complementarity-based rolling friction model for rigid contacts. Meccanica 48, 7, 1643--1659.Google ScholarGoogle ScholarCross RefCross Ref
  63. A. Tasora, M. Anitescu, S. Negrini, and D. Negrut. 2013. A compliant visco-plastic particle contact model based on differential variational inequalities. Int. J. Non-Linear Mechan. 53, SI, 2--12.Google ScholarGoogle ScholarCross RefCross Ref
  64. A. Tasora, D. Negrut, and M. Anitescu. 2008. Large-scale parallel multi-body dynamics with frictional contact on the graphical processing unit. J. Multi-Body Dynam. 222, 4, 315--326.Google ScholarGoogle Scholar
  65. R. Tonge, F. Benevolenski, and A. Voroshilov. 2012. Mass splitting for jitter-free parallel rigid body simulation. ACM Trans. Graph. 31, 4, 105. Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. J. C. Trinkle. 2003. Formulation of multibody dynamics as complementarity problems. In Proceedings of the 19th Biennial Conference on Mechanical Vibration and Noise, Parts A, B, and C (ASME'03). Vol. 5. ASME.Google ScholarGoogle ScholarCross RefCross Ref
  67. J. S. Uehara, M. A. Ambroso, R. P. Ojha, and D. J. Durian. 2003. Low-speed impact craters in loose granular media. Phys. Rev. Lett. 90, 194301.Google ScholarGoogle ScholarCross RefCross Ref
  68. L. Vu-Quoc, L. Lesburg, and X. Zhang. 2004. An accurate tangential force-displacement model for granular-flow simulations: Contacting spheres with plastic deformation, force-driven formulation. J. Comput. Phys. 196, 1, 298--326. Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. L. Vu-Quoc and X. Zhang. 1999. An elastoplastic contact force-displacement model in the normal direction: Displacement-driven version. Proc. Royal Soc. London Series A: Math. Phys. Engin. Sci. 455, 1991, 4013--4044.Google ScholarGoogle Scholar

Index Terms

  1. Using Nesterov's Method to Accelerate Multibody Dynamics with Friction and Contact

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 34, Issue 3
          April 2015
          152 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/2774971
          Issue’s Table of Contents

          Copyright © 2015 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 8 May 2015
          • Accepted: 1 February 2015
          • Revised: 1 January 2015
          • Received: 1 September 2014
          Published in tog Volume 34, Issue 3

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader