skip to main content
research-article

Superdiffusive Dispersion and Mixing of Swarms

Published:09 June 2015Publication History
Skip Abstract Section

Abstract

A common swarm task is to disperse evenly through an environment from an initial tightly packed formation. Due to communication and sensing limitations, it is often necessary to execute this task with little or no communication between swarm members. Unfortunately, prior approaches based on repulsive forces or uniform random walks can often converge quite slowly. With an appropriate choice of random distribution, however, it is possible to generate optimal or near-optimal dispersion and mixing in swarms with zero communication. In particular, we discuss three extremely simple algorithms: reactive Levy walk, reactive ball dispersion, and purely reactive dispersion. All three algorithms vastly outperform prior approaches in both constrained and unconstrained environments, providing a range of options for trading off between aggressiveness and evenness in dispersion.

References

  1. A. V. Chechkin, V. Y. Gonchar, and M. Szydlowski M. 2002. Fractional kinetics for relaxation and superdiffusion in a magnetic field. Physics of Plasmas 9, 78--88.Google ScholarGoogle ScholarCross RefCross Ref
  2. J. Beal. 2012. A tactical command approach to human control of vehicle swarms. In AAAI 2012 Fall Symposium on Human Control of Bio-Inspired Swarms. AAAI Press, 14--20.Google ScholarGoogle Scholar
  3. J. Beal. 2013. Superdiffusive dispersion and mixing of swarms with reactive levy walks. In IEEE International Conference on Self-Adaptive and Self-Organizing Systems. IEEE Press, 141--148. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. J. Beal and J. Bachrach. 2006. Infrastructure for engineered emergence in sensor/actuator networks. IEEE Intelligent Systems 21, 2, 10--19. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. J. Beal, N. Correll, L. Urbina, and J. Bachrach. 2009. Behavior modes for randomized robotic coverage. In 2nd International Conference on Robot Communication and Coordination. IEEE Press, 1--6.Google ScholarGoogle Scholar
  6. P. Becker-Kern, M. M. Meerschaert, and H.-P. Scheffler. 2004. Limit theorems for coupled continuous time random walks. Annals of Probability 32, 18, 730--756.Google ScholarGoogle Scholar
  7. S. Benhamou. 2007. How many animals really do the Levy walk? Ecology 88, 8, 1962--1969.Google ScholarGoogle ScholarCross RefCross Ref
  8. D. Brockmann, L. Hufnagel, and T. Geisel. 2006. The scaling laws of human travel. Nature 439, 7075, 462--465.Google ScholarGoogle Scholar
  9. D. Calitoiu. 2009. New search algorithm for randomly located objects: A non-cooperative agent based approach. In IEEE Symposium on Computational Intelligence for Security and Defense Applications (CISDA’09). IEEE Press, 1--6. DOI:http://dx.doi.org/10.1109/CISDA.2009.5356564 Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. H. Choset. 2001. Coverage for robotics--A survey of recent results. Annals of Mathematics and Artificial Intelligence 31, 1--4, 113--126. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. J. Eckert, H. Lichte, F. Dressler, and H. Frey. 2012. On the feasibility of mass-spring-relaxation for simple self-deployment. In 2012 IEEE 8th International Conference on Distributed Computing in Sensor Systems (DCOSS’12). IEEE Press, 203--208. DOI:http://dx.doi.org/10.1109/DCOSS.2012.14 Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. A. M. Edwards. 2011. Overturning conclusions of Lévy flight movement patterns by fishing boats and foraging animals. Ecology 92, 6, 1247--1257.Google ScholarGoogle ScholarCross RefCross Ref
  13. N. Elhage and J. Beal. 2010. Laplacian-based consensus on spatial computers. In International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS'10). 907--914. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. A. Howard, M. J. Mataric, and G. S. Sukhatme. 2002. Mobile sensor network deployment using potential fields: A distributed, scalable solution to the area coverage problem. In International Symposium on Distributed Autonomous Robotic Systems. Springer, 299--308.Google ScholarGoogle Scholar
  15. N. E. Humphries, N. Queiroz, J. R. M. Dyer, N. G. Pade, M. K. Musyl, K. M. Schaefer, D. W. Fuller, J. M. Brunnschweiler, T. K. Doyle, J. D. R. Houghton, G. C. Hays, C. S. Jones, L. R. Noble, V. J. Wearmouth, E. J Southall, and D. W. Sims. 2010. Environmental context explains Lévy and Brownian movement patterns of marine predators. Nature 465, 1066--1069.Google ScholarGoogle ScholarCross RefCross Ref
  16. M. Keeter, D. Moore, R. Muller, E. Nieters, J. Flenner, S. E. Martonosi, A. L. Bertozzi, A. G. Percus, and R. Levy. 2012. Cooperative search with autonomous vehicles in a 3D aquatic testbed. In 2012 American Control Conference (ACC’12). IEEE Press, 3154--3160.Google ScholarGoogle Scholar
  17. M. Kotulski. 1995. Asymptotic distributions of continuous-time random walks: A probabilistic approach. Journal of Statistical Physics 81, 3--4, 777--792. DOI:http://dx.doi.org/10.1007/BF02179257Google ScholarGoogle ScholarCross RefCross Ref
  18. L. Ludwig and M. Gini. 2006. Robotic swarm dispersion using wireless intensity signals. In Distributed Autonomous Robotic Systems 7, M. Gini and R. Voyles (Eds.). Springer, Japan, 135--144. DOI:http://dx.doi.org/10.1007/4-431-35881-1_14Google ScholarGoogle Scholar
  19. B. B. Mandelbrot. 1983. The Fractal Geometry of Nature. W. H. Freeman, New York.Google ScholarGoogle Scholar
  20. E. Mathews, T. Graf, and K. S. S. B. Kulathunga. 2012. Biologically inspired swarm robotic network ensuring coverage and connectivity. In 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC’12). IEEE Press, 84--90. DOI:http://dx.doi.org/10.1109/ICSMC.2012.6377681Google ScholarGoogle ScholarCross RefCross Ref
  21. J. McLurkin and J. Smith. 2004. Distributed algorithms for dispersion in indoor environments using a swarm of autonomous mobile robots. In 7th International Symposium on Distributed Autonomous Robotic Systems (DARS’04). Springer, 399--408.Google ScholarGoogle Scholar
  22. N. Mercadier, W. Guerin, M. Chevrollier, and R. Kaiser. 2009. Lévy flights of photons in hot atomic vapours. Nature Physics 5, 8, 602--605.Google ScholarGoogle ScholarCross RefCross Ref
  23. MIT Proto. 2012. MIT Proto. Software available at http://proto.bbn.com/.Google ScholarGoogle Scholar
  24. J. Mullins, B. Meyer, and A. P. Hu. 2012. Collective robot navigation using diffusion limited aggregation. In Parallel Problem Solving from Nature (PPSN XII’12), C. A. Coello, V. Cutello, K. Deb, S. Forrest, G. Nicosia, and M. Pavone (Eds.). Lecture Notes in Computer Science, Vol. 7492. Springer, Berlin, 266--276. DOI:http://dx.doi.org/10.1007/978-3-642-32964-7_27 Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. S. G. Nurzaman, Y. Matsumoto, Y. Nakamura, K. Shirai, S. Koizumi, and H. Ishiguro. 2010. An adaptive switching behavior between Levy and Brownian random search in a mobile robot based on biological fluctuation. In Intelligent Robots and Systems (IROS’10). IEEE Press, 1927--1934. DOI:http://dx.doi.org/10.1109/IROS.2010.5651671Google ScholarGoogle Scholar
  26. J. Oyekan, H. Hu, and D. Gu. 2010. Exploiting bacterial swarms for optimal coverage of dynamic pollutant profiles. In 2010 IEEE International Conference on Robotics and Biomimetics (ROBIO’10), IEEE Press, 1692--1697. DOI:http://dx.doi.org/10.1109/ROBIO.2010.5723586Google ScholarGoogle ScholarCross RefCross Ref
  27. M. J. Plank and E. A. Codling. 2009. Sampling rate and misidentification of Lévy and non-Lévy movement paths. Ecology 90, 12, 3546--3553.Google ScholarGoogle ScholarCross RefCross Ref
  28. S. Poduri and G. S. Sukhatme. 2007. Latency analysis of coalescence in robot groups. In IEEE International Conference on Robotics and Automation (ICRA’07). IEEE Press, 3295--3300.Google ScholarGoogle Scholar
  29. G. Ramos-Fernndez, J. L. Mateos, O. Miramontes, G. Cocho, H. Larralde, and B. Ayala-Orozco. 2004. Levy walk patterns in the foraging movements of spider monkeys (Ateles geoffroyi). Behavioral Ecology and Sociobiology 55, 3, 223--230.Google ScholarGoogle ScholarCross RefCross Ref
  30. I. Rhee, M. Shin, S. Hong, K. Lee, S. J. Kim, and S. Chong. 2011. On the Levy-walk nature of human mobility. IEEE/ACM Transactions on Networks 19, 3, 630--643. DOI:http://dx.doi.org/10.1109/TNET.2011.2120618 Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Russel Smith, et al. 2001 to 2010. Open Dynamics Engine (version 0.11). http://www.ode.org.Google ScholarGoogle Scholar
  32. F. L. Schuster and M. Levandowsky. 1996. Chemosensory responses of Acanthamoeba castellani: Visual analysis of random movement and responses to chemical signals. Journal of Eukaryotic Microbiology 43, 150--158.Google ScholarGoogle ScholarCross RefCross Ref
  33. M. Shin, S. Hong, and I. Rhee. 2008. DTN routing strategies using optimal search patterns. In 3rd ACM Workshop on Challenged Networks (CHANTS’08). ACM, New York, NY, 27--32. DOI:http://dx.doi.org/10.1145/1409985.1409992 Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. M. F. Shlesinger, B. J. West, and J. Klafter. 1987. Levy dynamics of enhanced diffusion: Application to turbulence. Physics Review Letters 58 11, 1100--1103. DOI:http://dx.doi.org/10.1103/PhysRevLett.58.1100Google ScholarGoogle Scholar
  35. M. F. Shlesinger, G. M. Zaslavsky, and J. Klafter. 1993. Strange kinetics. Nature 363 (May), 31--37.Google ScholarGoogle ScholarCross RefCross Ref
  36. D. W. Sims, E. J. Southall, N. E. Humphries, G. C. Hays, C. J. A. Bradshaw, J. W. Pitchford, A. James, M. Z. Ahmed, A. S. Brierley, M. A. Hindell, D. Morritt, M. K. Musyl, D. Righton, E. L. C. Shepard, V. J. Wearmouth, R. P. Wilson, M. J. Witt, and J. D. Metcalfe. 2008. Scaling laws of marine predator search behaviour. Nature 451, 1098--1102.Google ScholarGoogle ScholarCross RefCross Ref
  37. G. M. Viswanathan, S. V. Buldyrev, Shlomo Havlin, M. G. E. da Luz, E. P. Raposo, and H. E. Stanley. 1999. Optimizing the success of random searches. Nature 401, 911--914.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Superdiffusive Dispersion and Mixing of Swarms

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Autonomous and Adaptive Systems
        ACM Transactions on Autonomous and Adaptive Systems  Volume 10, Issue 2
        June 2015
        175 pages
        ISSN:1556-4665
        EISSN:1556-4703
        DOI:10.1145/2790463
        Issue’s Table of Contents

        Copyright © 2015 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 9 June 2015
        • Accepted: 1 October 2014
        • Revised: 1 July 2014
        • Received: 1 March 2014
        Published in taas Volume 10, Issue 2

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader