skip to main content
10.1145/1401132.1401166acmconferencesArticle/Chapter ViewAbstractPublication PagessiggraphConference Proceedingsconference-collections
research-article

Flow simulations using particles: bridging computer graphics and CFD

Published:11 August 2008Publication History

ABSTRACT

The simulation of the motion of interacting particles is a deceivingly simple, yet powerful and natural method for exploring and animating flows in physical systems as diverse as planetary dark accretion and sea waves, unsteady aerodynamics and nanofluidics.

Skip Supplemental Material Section

Supplemental Material

a25-koumoutsakos.mov

mov

273.4 MB

References

  1. A. Angelidis and F. Neyret. Simulation of smoke based on vortex filament primitives. In ACM-SIGGRAPH/EG Symposium on Computer Animation (SCA), 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. P. Angot, C. H. Bruneau, and P. Fabrie. A penalization method to take into account obstacles in incompressible viscous flows. NUMERISCHE MATHEMATIK, 81(4):497--520, Feb 1999.Google ScholarGoogle ScholarCross RefCross Ref
  3. J. T. Beale. A convergent 3-D vortex method with grid-free stretching. 46:401--424, 1986. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. M. Bergdorf, G. H. Cottet, and P. Koumoutsakos. Multilevel adaptive particle methods for convection-diffusion equations. Multiscale Modeling and Simulation, 4(1):328--357, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  5. M. Bergdorf and P. Koumoutsakos. A lagrangian particle-wavelet method. MULTISCALE MODELING AND SIMULATION, 5(3):980--995, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  6. M. Bergdorf, I. F. Sbalzarini, and P. Koumoutsakos. Particle simulations of growth. J. Computational Physics, 2008 (submitted).Google ScholarGoogle Scholar
  7. M. J. BERGER and J. OLIGER. Adaptive mesh refinement for hyperbolic partial-differential equations. JOURNAL OF COMPUTATIONAL PHYSICS, 53(3):484--512, 1984.Google ScholarGoogle ScholarCross RefCross Ref
  8. W. L. Briggs, V. E. Henson, and S. F. McCormick. A multigrid tutorial: second edition. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. S. Bryson and D. Levy. High-order central WENO schemes for multidimensional Hamilton-Jacobi equations. 41(4):1339--1369, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. M. CARLSON, P. MUCHA, and G. TURK. Rigid fluid: Animating the interplay between rigid bodies and fluid, 2004.Google ScholarGoogle Scholar
  11. A. K. Chaniotis, C. E. Frouzakis, J. C. Lee, A. G. Tomboulides, D. Poulikakos, and K. Boulouchos. Remeshed smoothed particle hydrodynamics for the simulation of laminar chemically reactive flows. 191(1):1--17, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. P. Chatelain, A. Curioni, M. Bergdorf, D. Rossinelli, W. Andreoni, and P. Koumoutsakos. Billion vortex particle direct numerical simulations of aircraft wakes. Computer Methods in Applied Mechanics and Engineering, 197(13--16):1296--1304, 2008.Google ScholarGoogle Scholar
  13. C. G. Chatelain P. and K. P. Particle mesh hydrodynamics for astrophysics simulations. Int. J. Modern Physics C, 18(4):610--618, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  14. D. Chopp and J. Sethian. Flow under curvature: Singularity formation, minimal surfaces, and geodesics. 2(4):235--255, 1993.Google ScholarGoogle Scholar
  15. D. L. Chopp. Computing minimal-surfaces via level set curvature flow. 106(1):77--91, 1993. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. A. J. Chorin. Numerical study of slightly viscous flow. 57(4):785--796, 1973.Google ScholarGoogle Scholar
  17. M. Coquerelle and G.-H. Cottet. A vortex level set method for the two-way coupling of an incompressible fluid with colliding rigid bodies. J. Comput. Phys., (in print), 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. G. Cottet. A particle model for fluid-structure interaction. C. R. Acad. Sci. Paris, Ser. I(335):833--838, 2002.Google ScholarGoogle Scholar
  19. G. H. Cottet. A particle-grid superposition method for the Navier-Stokes equations. 89:301--318, 1990. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. G. H. Cottet. Multi-physics and particle methods. COMPUTATIONAL FLUID AND SOLID MECHANICS 2003, VOLS 1 AND 2, PROCEEDINGS, pages 1296--1298, 2003.Google ScholarGoogle Scholar
  21. G.-H. Cottet and P. Koumoutsakos. Vortex Methods, Theory and Practice. Cambridge University Press, 2000.Google ScholarGoogle Scholar
  22. G.-H. Cottet, P. Koumoutsakos, and M. L. O. Salihi. Vortex methods with spatially varying cores. 162(1):164--185, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. G. H. Cottet and E. Maitre. A level set method for fluid-structure interactions with immersed surfaces. Mathematical Models and Methods In Applied Sciences, 16(3):415--438, Mar 2006.Google ScholarGoogle ScholarCross RefCross Ref
  24. G.-H. Cottet and P. Poncet. Advances in direct numerical simulations of 3D wallbounded flows by Vortex-in-Cell methods. 193(1):136--158, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. S. Elcott, Y. Y. Tong, E. Kanso, P. Schroder, and M. Desbrun. Stable, circulation-preserving, simplicial fluids. ACM TRANSACTIONS ON GRAPHICS, 26(1), 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. M. Ellero, M. Serrano, and P. Espanol. Incompressible smoothed particle hydrodynamics. JOURNAL OF COMPUTATIONAL PHYSICS, 226(2):1731--1752, Oct 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. D. Enright, S. Marschner, and R. Fedkiw. Animation and rendering of complex water surfaces, 2002.Google ScholarGoogle Scholar
  28. R. Fedkiw, J. Stam, and H. W. Jensen. Visual simulation of smoke. In E. Fiume, editor, SIGGRAPH 2001, Computer Graphics Proceedings, pages 15--22. ACM Press / ACM SIGGRAPH, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. N. Foster and D. Metaxas. Realistic animation of liquids. Graphical models and image processing: GMIP, 58(5):471--483, 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. F. Gibou, R. Fedkiw, R. Caflisch, and S. Osher. A level set approach for the numerical simulation of dendritic growth. J. Sci. Comput., 19(1--3):183--199, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. R. A. Gingold and J. J. Monaghan. Smoothed particle hydrodynamics: theory and application to non-spherical stars. Month Notices Roy. Astron. Soc., 181:375--389, 1977.Google ScholarGoogle ScholarCross RefCross Ref
  32. M. Grayson. A short note on the evolution of surfaces via mean curvatures. 58:285--314, 1989.Google ScholarGoogle Scholar
  33. L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. 73:325--348, 1987. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. F. H. Harlow. Particle-in-cell computing method for fluid dynamics. 3:319--343, 1964.Google ScholarGoogle Scholar
  35. L. Hernquist. Some cautionary remarks about smoothed particle hydrodynamics. ASTROPHYSICAL JOURNAL, 404(2):717--722, Feb 1993.Google ScholarGoogle ScholarCross RefCross Ref
  36. J. L. Hess. Higher order numerical solution of the integral equation for the two-dimensional Neumann problem. 2:1--15, 1973.Google ScholarGoogle Scholar
  37. S. E. Hieber and P. Koumoutsakos. A lagrangian particle level set method. J. Computational Physics, 210:342--367, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. S. E. Hieber, J. H. Walther, and P. Koumoutsakos. Remeshed smoothed particle hydrodynamics simulation of the mechanical behavior of human organs. 12(4):305--314, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. C. W. Hirt and B. D. Nichols. Volume of fluid (Vof) method for the dynamics of free boundaries. 39(1):201--225, 1981.Google ScholarGoogle Scholar
  40. R. W. Hockney and J. W. Eastwood. Computer Simulation Using Particles. Institute of Physics Publishing, Bristol, PA, USA, 2 edition, 1988. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. X. Y. Hu and N. A. Adams. An incompressible multi-phase sph method. JOURNAL OF COMPUTATIONAL PHYSICS, 227(1):264--278, Nov 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Y. Kawaguchi. A morphological study of the form of nature. SIGGRAPH Comput. Graph., 16(3):223--232, 1982. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. S. Kern and P. Koumoutsakos. Simulations of optimized anguilliform swimming. JOURNAL OF EXPERIMENTAL BIOLOGY, 209(24):4841--4857, Dec 2006.Google ScholarGoogle ScholarCross RefCross Ref
  44. R. A. Kerr. Planetary origins: A quickie birth for jupiters and saturns. Science, 298(5599):1698b--1699, 2002.Google ScholarGoogle ScholarCross RefCross Ref
  45. A. Kolb and N. Cuntz. Dynamic particle coupling for GPU-based fluid simulation. In Proc. ASIM, pages 722--727, 2005.Google ScholarGoogle Scholar
  46. A. Kolb, L. Latta, and C. Rezk-Salama. Hardware-based simulation and collision detection for large particle systems. In Proc. Graphics Hardware, pages 123--131. ACM/Eurographics, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. P. Koumoutsakos. Inviscid axisymmetrization of an elliptical vortex. JOURNAL OF COMPUTATIONAL PHYSICS, 138(2):821--857, Dec 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. P. Koumoutsakos. Multiscale flow simulations using particles. ANNUAL REVIEW OF FLUID MECHANICS, 37:457--487, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  49. P. KOUMOUTSAKOS and A. LEONARD. High-resolution simulations of the flow around an impulsively started cylinder using vortex methods. JOURNAL OF FLUID MECHANICS, 296:1--38, 1995.Google ScholarGoogle ScholarCross RefCross Ref
  50. P. Koumoutsakos, A. Leonard, and F. Pépin. Boundary conditions for viscous vortex methods. 113(1):52--61, 1994. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. R. Krasny. A study of singularity formation in a vortex sheet by the point vortex approximation. JFM, 167:65--93, 1986.Google ScholarGoogle ScholarCross RefCross Ref
  52. A. Leonard. Review. vortex methods for flow simulation. 37:289--335, 1980.Google ScholarGoogle Scholar
  53. R. J. LeVeque. High-resolution conservative algorithms for advection in incompressible flow. 33(2):627--665, 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. W. Liu, S. Jun, and S. Zhang. Reproducing kernel particle methods. 20(8--9):1081--1106, 1995.Google ScholarGoogle Scholar
  55. F. Losasso, J. O. Talton, N. Kwatra, and R. Fedkiw. Two-way coupled sph and particle level set fluid simulation. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 14(4):797--804, Jul-Aug 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. L. B. Lucy. A numerical approach to the testing of the fission hypothesis. Astron. J., 82:1013--1024, 1977.Google ScholarGoogle ScholarCross RefCross Ref
  57. S. MALLAT and W. L. HWANG. Singularity detection and processing with wavelets. IEEE TRANSACTIONS ON INFORMATION THEORY, 38(2):617--643, Mar 1992.Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. F. Milde, M. Bergdorf, and P. Koumoutsakos. A hybrid model for turmor induced angioegenesis. Biophys J, 2008.Google ScholarGoogle Scholar
  59. K. Miller and R. N. Miller. Moving finite elements. I. SIAM J. Numer. Anal., 18(6):1019--1032, 1981.Google ScholarGoogle ScholarCross RefCross Ref
  60. M. L. Minion and D. L. Brown. Performance of under-resolved two-dimensional incompressible flow simulations, ii. Journal of Computational Physics, 138:734--765, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. R. Mittal and G. Iaccarino. Immersed boundary methods for viscous flow. 37:to appear, 2005.Google ScholarGoogle Scholar
  62. J. J. Monaghan. Extrapolating B splines for interpolation. 60(2):253--262, 1985.Google ScholarGoogle Scholar
  63. J. J. Monaghan. Smoothed particle hydrodynamics. REPORTS ON PROGRESS IN PHYSICS, 68(8):1703--1759, Aug 2005.Google ScholarGoogle ScholarCross RefCross Ref
  64. J. P. Morris. Simulating surface tension with smoothed particle hydrodynamics. 33(3):333--353, 2000.Google ScholarGoogle Scholar
  65. S. D. Muller, I. Mezic, J. H. Walther, and P. Koumoutsakos. Transverse momentum micromixer optimization with evolution strategies. COMPUTERS and FLUIDS, 33(4):521--531, May 2004.Google ScholarGoogle ScholarCross RefCross Ref
  66. S. Osher and R. P. Fedkiw. Level set methods: An overview and some recent results. 169(2):463--502, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. S. Osher and J. A. Sethian. Front propagating with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulation. 79(1):12--49, 1988. Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. S. J. Osher and R. P. Fedkiw. Level set methods and dynamic implicit surfaces. Springer Verlag, 2002.Google ScholarGoogle Scholar
  69. M. L. Ould-Salihi, G.-H. Cottet, and M. El Hamraoui. Blending finite-difference and vortex methods for incompressible flow computations. 22(5):1655--1674, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. C. S. PESKIN. Numerical-analysis of blood-flow in heart. JOURNAL OF COMPUTATIONAL PHYSICS, 25(3):220--252, 1977.Google ScholarGoogle ScholarCross RefCross Ref
  71. H. Pfister and M. Gross. Point-based computer graphics. IEEE COMPUTER GRAPHICS AND APPLICATIONS, 24(4):22--23, Jul-Aug 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. P. Ploumhans, G. S. Winckelmans, J. K. Salmon, A. Leonard, and M. S. Warren. Vortex methods for direct numerical simulation of three-dimensional bluff body flows: Applications to the sphere at Re = 300, 500 and 1000. 178:427--463, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  73. S. Premoze, T. Tasdizen, J. Bigler, A. Lefohn, and R. T. Whitaker. Particle-based simulation of fluids. COMPUTER GRAPHICS FORUM, 22(3):401--410, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  74. W. T. Reeves. Particle systems - a technique for modeling a class of fuzzy objects. Computer Graphics, 17:359--376, 1983. Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. W. J. Rider and D. B. Kothe. Reconstructing volume tracking. 141:112--152, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  76. L. Rosenhead. The spread of vorticity in the wake behind a cylinder. 127(A):590--612, 1930.Google ScholarGoogle Scholar
  77. L. Rosenhead. The formation of vortices from a surface of discontinuity. 134:170--192, 1931.Google ScholarGoogle Scholar
  78. I. F. Sbalzarini, A. Hayer, A. Helenius, and P. Koumoutsakos. Simulations of (an)isotropic diffusion on curved biological surfaces. Biophys J, 90(3):878--885, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  79. R. Scardovelli and S. Zaleski. Direct numerical simulation of free-surface and interfacial flow. 31:567--603, 1999.Google ScholarGoogle Scholar
  80. I. J. Schoenberg. Contribution to the problem of approximation of equidistant data by analytic functions. Quart. Appl. Math., 4:45--99, 112--141, 1946.Google ScholarGoogle ScholarCross RefCross Ref
  81. A. Selle, N. Rasmussen, and R. Fedkiw. A vortex particle method for smoke, water and explosions. ACM Trans. Graph., 24(3):910--914, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  82. J. Sethian. Numerical algorithms for propagating interfaces: Hamilton-Jacobi equations and conservations laws. 31:131--161, 1990.Google ScholarGoogle Scholar
  83. J. A. Sethian. A fast marching level set method for monotonically advancing fronts. 93(4):1591--1595, 1996.Google ScholarGoogle Scholar
  84. J. A. Sethian. Fast marching methods. SIAM Rev., 41(2):199--235, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  85. J. A. Sethian. Evolution, implementation, and application of level set and fast marching methods for advancing fronts. 169(2):503--555, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  86. J. A. Sethian and P. Smereka. Level set methods for fluid interfaces. 35:341--372, 2003.Google ScholarGoogle Scholar
  87. K. Sims. Particle animation and rendering using data parallel computation. Computer Graphics (Siggraph '90 proceedings), pages 405--413, 1990. Google ScholarGoogle ScholarDigital LibraryDigital Library
  88. A. R. Smith. Plants, fractals, and formal languages. SIGGRAPH Comput. Graph., 18(3):1--10, 1984. Google ScholarGoogle ScholarDigital LibraryDigital Library
  89. H. A. STONE. A simple derivation of the time-dependent convective-diffusion equation for surfactant transport along a deforming interface. PHYSICS OF FLUIDS A-FLUID DYNAMICS, 2(1):111--112, Jan 1990.Google ScholarGoogle ScholarCross RefCross Ref
  90. J. Strain. Fast adaptive 2D vortex methods. 132:108--122, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  91. J. Strain. A fast semi-lagrangian contouring method for moving interfaces. 161(2):512--536, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  92. M. Sussman and E. Fatemi. An efficient, interface-preserving level set redistancing algorithm and its application to interfacial incompressible fluid flow. 20(4):1165--1191, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  93. M. Sussman, P. Smereka, and S. Osher. A level set approach for computing solutions to incompressible 2-phase flow. 114(1):146--159, 1994. Google ScholarGoogle ScholarDigital LibraryDigital Library
  94. C. Varea, J. L. Aragon, and R. A. Barrio. Turing patterns on a sphere. PHYSICAL REVIEW E, 60(4):4588--4592, Oct 1999.Google ScholarGoogle ScholarCross RefCross Ref
  95. O. V. Vasilyev. Solving multi-dimensional evolution problems with localized structures using second generation wavelets. INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS, 17(2):151--168, Apr 2003.Google ScholarGoogle ScholarCross RefCross Ref
  96. L. Verlet. Computer experiments on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. 159(1):98--103, 1967.Google ScholarGoogle Scholar
  97. J. H. Walther and P. Koumoutsakos. Three-dimensional particle methods for particle laden flows with two-way coupling. 167:39--71, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  98. N. Zabusky, M. Hughes, and K. Roberts. Contour dynamics for the euler equations in two dimensions. 30:96--106, 1979.Google ScholarGoogle Scholar
  99. S. T. Zalesak. Fully multidimensional flux-corrected transport algorithms for fluids. 31(3):335--362, 1979.Google ScholarGoogle Scholar

Index Terms

  1. Flow simulations using particles: bridging computer graphics and CFD

                Recommendations

                Comments

                Login options

                Check if you have access through your login credentials or your institution to get full access on this article.

                Sign in
                • Published in

                  cover image ACM Conferences
                  SIGGRAPH '08: ACM SIGGRAPH 2008 classes
                  August 2008
                  5354 pages
                  ISBN:9781450378451
                  DOI:10.1145/1401132

                  Copyright © 2008 ACM

                  Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

                  Publisher

                  Association for Computing Machinery

                  New York, NY, United States

                  Publication History

                  • Published: 11 August 2008

                  Permissions

                  Request permissions about this article.

                  Request Permissions

                  Check for updates

                  Qualifiers

                  • research-article

                  Acceptance Rates

                  Overall Acceptance Rate1,822of8,601submissions,21%

                  Upcoming Conference

                  SIGGRAPH '24

                PDF Format

                View or Download as a PDF file.

                PDF

                eReader

                View online with eReader.

                eReader