skip to main content
article

Real-time temperature measurement during a laser annealing process featuring a microthermocouple array: Exploiting nano and micro-metrology

Authors Info & Claims
Published:01 August 2011Publication History
Skip Abstract Section

Abstract

We report on the acquisition of a real-time in situ surface thermal profile over a silicon substrate exposed to a laser beam, featuring a sub-mm spatial resolution, simultaneously recorded in six different sample points. A thin-film microthermocouple array was lithographed on the silicon substrate, featuring N-type probes. A specific design of the PCB holder assembly, connected to the sampling chip by a spring-lead array, allowed a fast sample replacement after experiment. The physical conduction parameters relative to NiSil and NiCroSil thin thermoelectric films were extrapolated preparing a real-time resistance experiment during high vacuum thermal evaporation of the two alloys, exploiting a resistivity profile with sub-nanometre resolution. Information acquired during this experiment was used to derive the thermoelement properties and allow sensor calibration. The laser used to anneal the sample was a diode pumped solid state system. Numerical simulations confirmed the relevance of experimental data.

References

  1. [1] N.A. Burley, in: Proceedings Eleventh IMEKO Conference (Sensors), Houston, TX, 1998, p. 155.Google ScholarGoogle Scholar
  2. [2] N.A. Burley, Australian Department of Defence Report MRL-R-903, 1983.Google ScholarGoogle Scholar
  3. [3] A. Chiolerio, P. Martino, P. Pandolfi, G. Maccioni, C. Martinez de Marigorta, D. Perrone, L. Scaltrito, S. Ferrero, in: Proceedings of Fifth International WLT-Conference on Lasers in Manufacturing 2009, Munich, Germany.Google ScholarGoogle Scholar
  4. [4] D. Perrone, G. Maccioni, A. Chiolerio, C. Martinez de Marigorta, M. Naretto, P. Pandolfi, P. Martino, C. Ricciardi, A. Chiodoni, E. Celasco, L. Scaltrito, S. Ferrero, in: Proceedings of Fifth International WLT-Conference on Lasers in Manufacturing 2009, Munich, Germany.Google ScholarGoogle Scholar
  5. [5] Chiolerio, A., Maccioni, G., Martino, P., Cotto, M., Pandolfi, P., Rivolo, P., Ferrero, S. and Scaltrito, L., . J. Microelectron. Eng. v88. 2481-2483. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. [6] Barnat, E.V., Nagakura, D., Wang, P.-I. and Lu, T.-M., . J. Appl. Phys. v91. 1667-1672.Google ScholarGoogle ScholarCross RefCross Ref
  7. [7] Sondheimer, E.H., . Adv. Phys. v1. 1-39.Google ScholarGoogle ScholarCross RefCross Ref
  8. [8] Mayadas, A.F. and Shatzkes, M., . Phys. Rev. B. v1. 1382-1389.Google ScholarGoogle ScholarCross RefCross Ref
  9. [9] Zhang, W., Brongersma, S.H., Richard, O., Brijs, B., Palmans, R., Froyen, L. and Maex, K., . Microelectron. Eng. v76. 146-152. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. [10] Lunney, J.G. and Jordan, R., . Appl. Surf. Sci. v127-129. 941-946.Google ScholarGoogle ScholarCross RefCross Ref
  11. [11] Tani, G., Orazi, L., Fortunato, A. and Cuccolini, G., . J. Manuf. Sci. Eng. v130. 031111-1Google ScholarGoogle ScholarCross RefCross Ref
  12. [12] www.ioffe.ru/SVA/NSM/Semicond/Si/thermal.html.Google ScholarGoogle Scholar

Index Terms

  1. Real-time temperature measurement during a laser annealing process featuring a microthermocouple array: Exploiting nano and micro-metrology
      Index terms have been assigned to the content through auto-classification.

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Article Metrics

        • Downloads (Last 12 months)0
        • Downloads (Last 6 weeks)0

        Other Metrics