skip to main content
10.1145/3290605.3300713acmconferencesArticle/Chapter ViewAbstractPublication PageschiConference Proceedingsconference-collections
research-article

VARI-SOUND: A Varifocal Lens for Sound

Published:02 May 2019Publication History

ABSTRACT

Centuries of development in optics have given us passive devices (i.e. lenses, mirrors and filters) to enrich audience immersivity with light effects, but there is nothing similar for sound. Beam-forming in concert halls and outdoor gigs still requires a large number of speakers, while headphones are still the state-of-the-art for personalized audio immersivity in VR. In this work, we show how 3D printed acoustic meta-surfaces, assembled into the equivalent of optical systems, may offer a different solution. We demonstrate how to build them and how to use simple design tools, like the thin-lens equation, also for sound. We present some key acoustic devices, like a "collimator", to transform a standard computer speaker into an acoustic "spotlight"; and a "magnifying glass", to create sound sources coming from distinct locations than the speaker itself. Finally, we demonstrate an acoustic varifocal lens, discussing applications equivalent to auto-focus cameras and VR headsets and the limitations of the technology.

Skip Supplemental Material Section

Supplemental Material

paper483.mp4

mp4

373.6 MB

paper483p.mp4

mp4

849.9 KB

paper483.mp4

mp4

373.6 MB

References

  1. Armando Barreto, Kenneth John Faller, and Malek Adjouadi. 2009. 3D Sound for Human-computer Interaction: Regions with Different CHI 2019, May 4--9, 2019, Glasgow, Scotland Uk G. Memoli et al. Limitations in Elevation Localization. In Proceedings of the 11th International ACM SIGACCESS Conference on Computers and Accessibility (Assets '09). ACM, New York, NY, USA, 211--212. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. A. J. Berkhout, D. de Vries, and P. Vogel. 1993. Acoustic control by wave field synthesis. The Journal of the Acoustical Society of America 93, 5 (1993), 2764--2778.Google ScholarGoogle ScholarCross RefCross Ref
  3. Marinus M. Boone, Edwin N. G. Verheijen, and G. Jansen. 1996. Virtual Reality by Sound Reproduction Based on Wave Field Synthesis. In Audio Engineering Society Convention 100. http://www.aes.org/e-lib/ browse.cfm?elib=7624Google ScholarGoogle Scholar
  4. K. Born and W. Wolf. 1970. Principles of Optics. Pergamon Press.Google ScholarGoogle Scholar
  5. Anne-Claire Bourland, Peter Gorman, Jess McIntosh, and Asier Marzo. 2018. Project Telepathy. Interactions 25, 5 (Aug. 2018), 16--17. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Tom Carter, Sue Ann Seah, Benjamin Long, Bruce Drinkwater, and Sriram Subramanian. 2013. UltraHaptics: Multi-point Mid-air Haptic Feedback for Touch Surfaces. In Proceedings of the 26th Annual ACM Symposium on User Interface Software and Technology (UIST '13). ACM, New York, NY, USA, 505--514. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Jordan Cheer, Stephen Daley, and Cameron McCormick. 2017. Feedforward control of sound transmission using an active acoustic metamaterial. Smart Materials and Structures 26, 2 (2017), 025032. http: //stacks.iop.org/0964--1726/26/i=2/a=025032Google ScholarGoogle ScholarCross RefCross Ref
  8. Andrea Colombi, Victoria Ageeva, Richard J. Smith, Adam Clare, Rikesh Patel, Matt Clark, Daniel Colquitt, Philippe Roux, Sebastien Guenneau, and Richard V. Craster. 2017. Enhanced sensing and conversion of ultrasonic Rayleigh waves by elastic metasurfaces. Scientific Reports 7 (2017). Issue 1.Google ScholarGoogle Scholar
  9. Andrea Colombi, Daniel Colquitt, Philippe Roux, Sebastien Guenneau, and Richard V. Craster. 2016. A seismic metamaterial: The resonant metawedge. Scientific Reports 6 (2016).Google ScholarGoogle Scholar
  10. Charles R. P. Courtney, Christine E. M. Demore, Hongxiao Wu, Alon Grinenko, Paul D. Wilcox, Sandy Cochran, and Bruce W. Drinkwater. 2014. Independent trapping and manipulation of microparticles using dexterous acoustic tweezers. Applied Physics Letters 104, 15 (2014), 154103.Google ScholarGoogle ScholarCross RefCross Ref
  11. Steven A. Cummer, Johan Christensen, and Andrea Alù. 2016. Controlling sound with acoustic metamaterials. Nature Reviews Materials 1 (2016), 16001.Google ScholarGoogle ScholarCross RefCross Ref
  12. Cassidy Curtis, David Eisenmann, Rachid El Guerrab, and Scot Stafford. 2016. The Making of Pearl, a 360&Deg; Google Spotlight Story. In ACM SIGGRAPH 2016 VR Village (SIGGRAPH '16). ACM, New York, NY, USA, Article 21, 1 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Woon-Seng Gan, Jun Yang, and Tomoo Kamakura. 2012. A review of parametric acoustic array in air. Applied Acoustics 73, 12 (2012), 1211 -- 1219.Google ScholarGoogle ScholarCross RefCross Ref
  14. Stanislav B. Glybovski, Sergei A. Tretyakov, Pavel A. Belov, Yuri S. Kivshar, and Constantin R. Simovski. 2016. Metasurfaces: From microwaves to visible. Physics Reports 634 (2016), 1 -- 72.Google ScholarGoogle ScholarCross RefCross Ref
  15. Simon Holland, David R. Morse, and Henrik Gedenryd. 2002. AudioGPS: Spatial Audio Navigation with a Minimal Attention Interface. Personal Ubiquitous Comput. 6, 4 (Jan. 2002), 253--259. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Alexandra Ion, Johannes Frohnhofen, Ludwig Wall, Robert Kovacs, Mirela Alistar, Jack Lindsay, Pedro Lopes, Hsiang-Ting Chen, and Patrick Baudisch. 2016. Metamaterial Mechanisms. In Proceedings of the 29th Annual Symposium on User Interface Software and Technology (UIST '16). ACM, New York, NY, USA, 529--539. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Alexandra Ion, Ludwig Wall, Robert Kovacs, and Patrick Baudisch. 2017. Digital Mechanical Metamaterials. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems (CHI '17). ACM, New York, NY, USA, 977--988. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Miyu Iwafune, Taisuke Ohshima, and Yoichi Ochiai. 2016. Coded Skeleton: Programmable Deformation Behaviour for Shape Changing Interfaces. In SIGGRAPH ASIA 2016 Emerging Technologies (SA '16). ACM, New York, NY, USA, Article 1, 2 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Louis Jackowski-Ashley, Gianluca Memoli, Mihai Caleap, Nicolas Slack, Bruce W. Drinkwater, and Sriram Subramanian. 2017. Haptics and Directional Audio Using Acoustic Metasurfaces. In Proceedings of the 2017 ACM International Conference on Interactive Surfaces and Spaces (ISS '17). ACM, New York, NY, USA, 429--433. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Noé Jiménez, Vicent Romero-García, Vincent Pagneux, and JeanPhilippe Groby. 2017. Rainbow-trapping absorbers: Broadband, perfect and asymmetric sound absorption by subwavelength panels for transmission problems. Scientific Reports 7 (2017). Issue 1.Google ScholarGoogle Scholar
  21. Toshiyuki Kimura, Munenori Naoe, Yoko Yamakata, and Michiaki Katsumoto. 2009. Subjective Effect of Synthesis Conditions in 3D Sound Field Reproduction System Using a Few Transducers and Wave Field Synthesis. In Proceedings of the 3rd International Universal Communication Symposium (IUCS '09). ACM, New York, NY, USA, 215--220. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Jussi Kuutti, Juhana Leiwo, and Raimo E. Sepponen. 2014. Local Control of Audio Environment: A Review of Methods and Applications. Technologies 2, 1 (2014), 31--53.Google ScholarGoogle Scholar
  23. R. J. Lalonde, A. Worthington, and J. W. Hunt. 1993. Field conjugate acoustic lenses for ultrasound hyperthermia. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 40, 5 (1993), 592--602.Google ScholarGoogle ScholarCross RefCross Ref
  24. C. J. L. Lane, A. K. Dunhill, B. W. Drinkwater, and P. D. Wilcox. 2010. The inspection of anisotropic single-crystal components using a 2D ultrasonic array. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 57, 12 (December 2010), 2742--2752.Google ScholarGoogle ScholarCross RefCross Ref
  25. Fabrice Lemoult, Nadège Kaina, Mathias Fink, and Geoffroy Lerosey. 2016. Soda Cans Metamaterial: A Subwavelength-Scaled Phononic Crystal. Crystals 6, 7 (2016).Google ScholarGoogle Scholar
  26. Dingzeyu Li, David I. W. Levin, Wojciech Matusik, and Changxi Zheng. 2016. Acoustic Voxels: Computational Optimization of Modular Acoustic Filters. ACM Trans. Graph. 35, 4, Article 88 (July 2016), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Yong Li, Xue Jiang, Rui-qi Li, Bin Liang, Xin-ye Zou, Lei-lei Yin, and Jian-chun Cheng. 2014. Experimental Realization of Full Control of Reflected Waves with Subwavelength Acoustic Metasurfaces. Phys. Rev. Applied 2 (Dec 2014), 064002. Issue 6.Google ScholarGoogle ScholarCross RefCross Ref
  28. Yong Li, Bin Liang, Zhong-ming Gu, Xin-ye Zou, and Jian-chun Cheng. 2013. Reflected wavefront manipulation based on ultrathin planar acoustic metasurfaces. Scientific Reports 3 (2013).Google ScholarGoogle Scholar
  29. Chenkai Liu, Jie Luo, and Yun Lai. 2018. Acoustic metamaterials with broadband and wide-angle impedance matching. Phys. Rev. Materials 2 (Apr 2018), 045201. Issue 4.Google ScholarGoogle Scholar
  30. Guancong Ma, Xiying Fan, Ping Sheng, and Mathias Fink. 2018. Shaping reverberating sound fields with an actively tunable metasurface. Proceedings of the National Academy of Sciences 115, 26 (2018), 6638--6643. arXiv:https://www.pnas.org/content/115/26/6638.full.pdfGoogle ScholarGoogle ScholarCross RefCross Ref
  31. Guancong Ma and Ping Sheng. 2016. Acoustic metamaterials: From local resonances to broad horizons. Science Advances 2, 2 (2016).Google ScholarGoogle Scholar
  32. Sebastian Marwecki and Patrick Baudisch. 2018. Scenograph: Fitting Real-Walking VR Experiences into Various Tracking Volumes. In Proceedings of the 31st Annual ACM Symposium on User Interface Software and Technology (UIST '18). ACM, New York, NY, USA, 511--520. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Asier Marzo, Sue Ann Seah, Bruce W. Drinkwater, Deepak Ranjan Sahoo, Benjamin Long, and Sriram Subramanian. 2015. Holographic acoustic elements for manipulation of levitated objects. Nature Communications 6 (2015).Google ScholarGoogle Scholar
  34. Jun Mei and Ying Wu. 2014. Controllable transmission and total reflection through an impedance-matched acoustic metasurface. New Journal of Physics 16, 12 (2014), 123007. http://stacks.iop.org/1367--2630/ 16/i=12/a=123007Google ScholarGoogle ScholarCross RefCross Ref
  35. Gianluca Memoli, Mihai Caleap, Michihiro Asakawa, Deepak R. Sahoo, Bruce W. Drinkwater, and Sriram Subramanian. 2017. Metamaterial bricks and quantization of meta-surfaces. Nature Communications 8 (2017).Google ScholarGoogle Scholar
  36. S. C. Mondal, P. D. Wilcox, and B. W. Drinkwater. 2005. Design and Evaluation of Two Dimensional Phased Array Ultrasonic Transducers. AIP Conference Proceedings 760, 1 (2005), 899--905.Google ScholarGoogle Scholar
  37. Mohd Adili Norasikin, Diego Martinez Plasencia, Spyros Polychronopoulos, Gianluca Memoli, Yutaka Tokuda, and Sriram Subramanian. 2018. SoundBender: Dynamic Acoustic Control Behind Obstacles. In Proceedings of the 31st Annual ACM Symposium on User Interface Software and Technology (UIST '18). ACM, New York, NY, USA, 247--259. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Marianna Obrist, Grace Boyle, Marcel van Brakel, and Frederik Duerinck. 2017. Multisensory Experiences & Spaces. In Proceedings of the 2017 ACM International Conference on Interactive Surfaces and Spaces (ISS '17). ACM, New York, NY, USA, 469--472. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Yoichi Ochiai, Takayuki Hoshi, and Jun Rekimoto. 2014. Pixie Dust: Graphics Generated by Levitated and Animated Objects in Computational Acoustic-potential Field. In ACM SIGGRAPH 2014 Posters (SIGGRAPH '14). ACM, New York, NY, USA, Article 83, 1 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Yoichi Ochiai, Takayuki Hoshi, and Ippei Suzuki. 2017. Holographic Whisper: Rendering Audible Sound Spots in Three-dimensional Space by Focusing Ultrasonic Waves. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems (CHI '17). ACM, New York, NY, USA, 4314--4325. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Johannes T.B. Overvelde, Twan A. de Jong, Yanina Shevchenko, Sergio A. Becerra, George M. Whitesides, James C. Weaver, Chuck Hoberman, and Katia Bertoldi. 2016. A three-dimensional actuated origamiinspired transformable metamaterial with multiple degrees of freedom. Nature Communications 7 (2016).Google ScholarGoogle Scholar
  42. Giuseppe Pesce, Giorgio Volpe, Onofrio M. Maragó, Philip H. Jones, Sylvain Gigan, Antonio Sasso, and Giovanni Volpe. 2015. Step-by-step guide to the realization of advanced optical tweezers. J. Opt. Soc. Am. B 32, 5 (May 2015), B84--B98.Google ScholarGoogle ScholarCross RefCross Ref
  43. Rory J. Piper, Mark A. Hughes, Carmel M. Moran, and Jothy Kandasamy. 2016. Focused ultrasound as a non-invasive intervention for neurological disease: a review. British Journal of Neurosurgery 30, 3 (2016), 286--293. arXiv:https://doi.org/10.3109/02688697.2016.1173189 PMID: 27101792.Google ScholarGoogle ScholarCross RefCross Ref
  44. F. Pokorny and F. Graf. 2014. Akustische Vermessung parametrischer Lautsprecherarrays im Kontext der Transauraltechnik (in German). In Annual meeting of the German Acoustical Society (DAGA'14). http: //pub.dega-akustik.de/DAGA_2014/data/articles/000129.pdfGoogle ScholarGoogle Scholar
  45. F. Joseph Pompei. 1998. The Use of Airborne Ultrasonics for Generating Audible Sound Beams. In Audio Engineering Society Convention 105. http://www.aes.org/e-lib/browse.cfm?elib=8327Google ScholarGoogle Scholar
  46. Bogdan-Ioan Popa, Durvesh Shinde, Adam Konneker, and Steven A. Cummer. 2015. Active acoustic metamaterials reconfigurable in real time. Phys. Rev. B 91 (Jun 2015), 220303. Issue 22.Google ScholarGoogle ScholarCross RefCross Ref
  47. Nimesha Ranasinghe, Pravar Jain, Nguyen Thi Ngoc Tram, Koon Chuan Raymond Koh, David Tolley, Shienny Karwita, Lin Lien-Ya, Yan Liangkun, Kala Shamaiah, Chow Eason Wai Tung, Ching Chiuan Yen, and Ellen Yi-Luen Do. 2018. Season Traveller: Multisensory Narration for Enhancing the Virtual Reality Experience. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (CHI '18). ACM, New York, NY, USA, Article 577, 13 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Jaime Reis. 2016. Short overview in parametric loudspeakers array technology and its implications in spatialization in electronic music. In International Computer Music Conference 2016. Michigan Publishing, 241--248. https://quod.lib.umich.edu/i/icmc/bbp2372.2016.047/1Google ScholarGoogle Scholar
  49. Francis Rumsey. 2013. Spatial Audio (Music Technology) 3rd ed. Focal Press.Google ScholarGoogle Scholar
  50. Jaime Sánchez and Mauricio Sáenz. 2005. 3D Sound Interactive Environments for Problem Solving. In Proceedings of the 7th International ACM SIGACCESS Conference on Computers and Accessibility (Assets '05). ACM, New York, NY, USA, 173--179. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Lauri Savioja and U. Peter Svensson. 2015. Overview of geometrical room acoustic modeling techniques. The Journal of the Acoustical Society of America 138, 2 (2015), 708--730.Google ScholarGoogle ScholarCross RefCross Ref
  52. Gang Yong Song, Qiang Cheng, Bei Huang, Hui Yuan Dong, and Tie Jun Cui. 2016. Broadband fractal acoustic metamaterials for low-frequency sound attenuation. Applied Physics Letters 109, 13 (2016), 131901. arXiv:https://doi.org/10.1063/1.4963347Google ScholarGoogle ScholarCross RefCross Ref
  53. Robert E. Stevens, Thomas N. L. Jacoby, Ilinca S. Aricescu, and Daniel P. Rhodes. 2017. A review of adjustable lenses for head mounted displays., 10335 pages.Google ScholarGoogle Scholar
  54. Steven Strachan, Parisa Eslambolchilar, Roderick Murray-Smith, Stephen Hughes, and Sile O'Modhrain. 2005. GpsTunes: Controlling Navigation via Audio Feedback. In Proceedings of the 7th International Conference on Human Computer Interaction with Mobile Devices &Amp; Services (MobileHCI '05). ACM, New York, NY, USA, 275--278. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Yutaka Takase and Shoichi Hasegawa. 2012. Presentation of Directional Information by Sound Field Control. In Proceedings of the 3rd Augmented Human International Conference (AH '12). ACM, New York, NY, USA, Article 32, 3 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Kun Tang, Chunyin Qiu, Manzhu Ke, Jiuyang Lu, Yangtao Ye, and Zhengyou Liu. 2014. Anomalous refraction of airborne sound through ultrathin metasurfaces. Scientific Reports 4 (2014).Google ScholarGoogle Scholar
  57. D. H. Turnbull and F. S. Foster. 1991. Beam steering with pulsed two-dimensional transducer arrays. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 38, 4 (July 1991), 320--333.Google ScholarGoogle ScholarCross RefCross Ref
  58. Shi-Chang Wooh and Yijun Shi. 1998. Influence of phased array element size on beam steering behavior. Ultrasonics 36, 6 (1998), 737 -- 749.Google ScholarGoogle ScholarCross RefCross Ref
  59. Yangbo Xie, Wenqi Wang, Huanyang Chen, Adam Konneker, BogdanIoan Popa, and Steven A. Cummer. 2014. Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface. Nature Communications 5 (2014).Google ScholarGoogle Scholar
  60. Jun Yang, Woon-Seng Gan, Khim-Sia Tan, and Meng-Hwa Er. 2005. Acoustic beamforming of a parametric speaker comprising ultrasonic transducers. Sensors and Actuators A: Physical 125, 1 (2005), 91 -- 99.Google ScholarGoogle ScholarCross RefCross Ref
  61. Chunfang Ye and Robert R. McLeod. 2008. GRIN lens and lens array fabrication with diffusion-driven photopolymer. Opt. Lett. 33, 22 (Nov 2008), 2575--2577.Google ScholarGoogle ScholarCross RefCross Ref
  62. Masahide Yoneyama, Jun-ichiroh Fujimoto, Yu Kawamo, and Shoichi Sasabe. 1983. The audio spotlight: An application of nonlinear interaction of sound waves to a new type of loudspeaker design. The Journal of the Acoustical Society of America 73, 5 (1983), 1532--1536.Google ScholarGoogle ScholarCross RefCross Ref
  63. Seraphina Yong and Hao-Chuan Wang. 2018. Using Spatialized Audio to Improve Human Spatial Knowledge Acquisition in Virtual Reality. In Proceedings of the 23rd International Conference on Intelligent User Interfaces Companion (IUI '18 Companion). ACM, New York, NY, USA, Article 51, 2 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. Nanfang Yu, Patrice Genevet, Mikhail A. Kats, Francesco Aieta, JeanPhilippe Tetienne, Federico Capasso, and Zeno Gaburro. 2011. Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction. 334 (2011), 333--337.Google ScholarGoogle Scholar
  65. Bertram Yuh, An Liu, Robert Beatty, Alexander Jung, and Jeffrey Y C Wong. 2016. Focal therapy using magnetic resonance image-guided focused ultrasound in patients with localized prostate cancer. Journal of therapeutic ultrasound 4 (2016). Issue 8.Google ScholarGoogle Scholar
  66. Xuefeng Zhu, Kun Li, Peng Zhang, Jie Zhu, Jintao Zhang, Chao Tian, and Shengchun Liu. 2016. Implementation of dispersion-free slow acoustic wave propagation and phase engineering with helicalstructured metamaterials. Nature Communications 7 (2016).Google ScholarGoogle Scholar

Index Terms

  1. VARI-SOUND: A Varifocal Lens for Sound

            Recommendations

            Comments

            Login options

            Check if you have access through your login credentials or your institution to get full access on this article.

            Sign in
            • Published in

              cover image ACM Conferences
              CHI '19: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems
              May 2019
              9077 pages
              ISBN:9781450359702
              DOI:10.1145/3290605

              Copyright © 2019 ACM

              Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

              Publisher

              Association for Computing Machinery

              New York, NY, United States

              Publication History

              • Published: 2 May 2019

              Permissions

              Request permissions about this article.

              Request Permissions

              Check for updates

              Qualifiers

              • research-article

              Acceptance Rates

              CHI '19 Paper Acceptance Rate703of2,958submissions,24%Overall Acceptance Rate6,199of26,314submissions,24%

              Upcoming Conference

              CHI '24
              CHI Conference on Human Factors in Computing Systems
              May 11 - 16, 2024
              Honolulu , HI , USA

            PDF Format

            View or Download as a PDF file.

            PDF

            eReader

            View online with eReader.

            eReader

            HTML Format

            View this article in HTML Format .

            View HTML Format