skip to main content
10.1145/2984511.2984526acmconferencesArticle/Chapter ViewAbstractPublication PagesuistConference Proceedingsconference-collections
research-article

NormalTouch and TextureTouch: High-fidelity 3D Haptic Shape Rendering on Handheld Virtual Reality Controllers

Published:16 October 2016Publication History

ABSTRACT

We present an investigation of mechanically-actuated hand-held controllers that render the shape of virtual objects through physical shape displacement, enabling users to feel 3D surfaces, textures, and forces that match the visual rendering. We demonstrate two such controllers, NormalTouch and TextureTouch, which are tracked in 3D and produce spatially-registered haptic feedback to a user's finger. NormalTouch haptically renders object surfaces and provides force feedback using a tiltable and extrudable platform. TextureTouch renders the shape of virtual objects including detailed surface structure through a 4×4 matrix of actuated pins. By moving our controllers around while keeping their finger on the actuated platform, users obtain the impression of a much larger 3D shape by cognitively integrating output sensations over time. Our evaluation compares the effectiveness of our controllers with the two de-facto standards in Virtual Reality controllers: device vibration and visual feedback only. We find that haptic feedback significantly increases the accuracy of VR interaction, most effectively by rendering high-fidelity shape output as in the case of our controllers.

Skip Supplemental Material Section

Supplemental Material

uist2202-file3.mp4

mp4

68.4 MB

p717-benko.mp4

mp4

193.8 MB

uist-0412.mp4

mp4

331.5 MB

References

  1. Alexander, J., Lucero, A., and Subramanian, S. 2012. Tilt displays: designing display surfaces with multi-axis tilting and actuation. In Proc. of ACM MobileHCI '12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Araujo, B., Jota, R., Perumal, V., Yao, J.X., Singh, K. and Wigdor, D. Snake Charmer: Physically Enabling Virtual Objects. In Proc. of the TEI '16, 218--226. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Azmandian, M, Hancock, M., Benko, H., Ofek, E., and Wilson, A.D. 2016. Haptic Retargeting: Dynamic Repurposing of Passive Haptics for Enhanced Virtual Reality Experiences. In Proc. of ACM SIGCHI '16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Benali-Khoudja, M., Hafez, M., Alexandre, J.-M. and Kheddar, A. 2004. Tactile interfaces: a state-of-the-art survey. In Int. Symposium on Robotics, vol. 31.Google ScholarGoogle Scholar
  5. Bowman, D., Kruiff, E., La Viola, J., and Poupyrev, I. 3D User Interfaces. Addison Wesley. 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Bouzit, M., Popescu, G., Burdea, G., and Boian, R. 2002. The Rutgers Master II-ND force feedback glove. In Proc. of HAPTICS '02. 145--152. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Brewster, S. and Brown, L.M. 2004. Tactons: structured tactile messages for non-visual information display. In, Australasian User Interface Conference '04, 18--22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Carter, T., Seah, S. A., Long, B., Drinkwater, B., Subramanian, S. 2013. Ultrahaptics: Multi-point mid-air haptic feedback for touch surfaces. In Proc. ACM UIST '13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Choi, H.R., Kim, D., Chuc, N.H., Vuong, N.H.L., Koo, J., Nam, J., and Lee, Y. 2009. Development of integrated tactile display devices. In Electroactive Polymer Actuators and Devices. Proc. of SPIE Vol. 7287.Google ScholarGoogle Scholar
  10. CyberGrasp Glove, CyberGlove Systems Inc. http://www.cyberglovesystems.com/cybergrasp/. Last accessed April 8, 2016.Google ScholarGoogle Scholar
  11. CyberTouch Glove, CyberGlove Systems Inc. http://www.cyberglovesystems.com/cybertouch/. Last accessed April 8, 2016.Google ScholarGoogle Scholar
  12. Follmer, S., Leithinger, D., Olwal, A., Hogge, A., and Ishii, H. 2013. inFORM: Dynamic physical affordances and constraints through shape and object actuation. In Proc. of ACM UIST '13. 417--426. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Haption Virtuose 6D. http://www.haption.com/site/index.php/en/products-menu-en/hardware-menu-en/virtuose-6d-menu-en. Last accessed July 29, 2016.Google ScholarGoogle Scholar
  14. Hayward, V., Astley, O., Cruz-Hernandez, M., Grant, D., and Robles-De-La-Torre, G. 2004. Haptic interfaces and devices. Sensor Review, 24, 1. 16--29.Google ScholarGoogle ScholarCross RefCross Ref
  15. Hemmert, F., Hamann, S., Lwe, M., Wohlauf, A., Zeipelt, J., and Joost, G. 2010. Take me by the hand: Haptic compasses in mobile devices through shape change and weight shift. In Proc. of ACM NordiCHI'10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Holz, C. and Baudisch, P. The Generalized Perceived Input Point Model and How to Double Touch Accuracy by Extracting Fingerprints. In Proc. CHI '10, 581--590. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Holz, C. and Baudisch, P. Understanding Touch. In Proc. of ACM SIGCHI '11, 2501--2510. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Iwata, H., Yano, H., Nakaizumi, F., and Kawamura, R. 2001. Project feelex: Adding haptic surface to graphics. In Proc. of ACM SIGGRAPH '01. 469--476. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Jang, S., Kim, L., Tanner, K., Ishii, H., and Follmer, S. 2016. Haptic Edge Display for Mobile Tactile Interaction. To appear in Proc. of ACM SIGCHI '16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Kim, S.Y., Kyung, K.U., Park, J., and Kwon, D.S. 2007. Real-time area-based haptic rendering and the augmented tactile display device for a palpation simulator. Advanced Robotics. 21, 9. 961--981.Google ScholarGoogle ScholarCross RefCross Ref
  21. Krusteva, D., Sahoo, D., Marzo, A., Subramanian, S., and Coyle, D. 2015. Marionette: a multi-finger tilt feedback device for curvatures and haptic images perception. In Extended Abstracts of ACM SIGCHI '15. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Kyung, K.U., and Lee, J.Y. 2009. Ubi-Pen: A Haptic Interface with Texture and Vibrotactile Display. IEEE Comput. Graph. Appl. 29, 1. 56--64.Google ScholarGoogle ScholarCross RefCross Ref
  23. Lee, J., Dietz, P., Leigh, D., Yerazunis, W., and Hudson, S. Haptic Pen: A Tactile Feedback Stylus for Touch Displays. In Proc. of ACM UIST '04. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Luk, J., Pasquero, J., Little, S., MacLean, K., Levesque, V., and Hayward, V. 2006. A role for haptics in mobile interaction: initial design using a handheld tactile display prototype. In Proc. of ACM SIGCHI '06. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Massie, T. and Salisbury, J.K. 1994. The PHANToM Haptic Interface: A Device for Probing Virtual Objects. Dynamics and Control 1994. In Proc. of the ASME Winter Annual Meeting '94.Google ScholarGoogle Scholar
  26. Novint Falcon, Novint Technologies Inc. http://www.novint.com/index.php/novintfalcon. Last accessed April 8, 2016.Google ScholarGoogle Scholar
  27. Overholt, D. 2001. The MATRIX: A novel controller for musical expression. In Proc. of New Interfaces for Musical Expression (NIME '01). 1--4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Prattichizzo, D., Chinello, F., Pacchierotti, C. and Malvezzi, M. 2013. Towards wearability in fingertip haptics: a 3-DoF wearable device for cutaneous force feedback. IEEE Trans. Haptics, vol. 6(4), 506--516. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Poupyrev, I., Nashida, T., Maruyama, S., Rekimoto, J., and Yamaji, Y. Lumen: Interactive visual and shape display for calm computing. SIGGRAPH ETech '04. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Rekimoto, J. 2013. Traxion: a tactile interaction device with virtual force sensation. In Proc. of ACM UIST '13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Salisbury, K., Conti F., and Barbagli, F. 2004. Haptic rendering: introductory concepts. IEEE Computer Graphics and Applications, 24, 2. 24--32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Sinclair, M., Pahud, M. and Benko, H. 2014. TouchMover 2.0 - 3D Touchscreen with Haptic Feedback and Haptic Texture. In Proc. of IEEE HAPTICS '14.Google ScholarGoogle Scholar
  33. Summers, I.R., Chanter, C.M., Southall, A.L., and Brady, A.C. 2001. Results from a tactile array on the fingertip. In Proc. of Eurohaptics '01, 26--28.Google ScholarGoogle Scholar
  34. Van der Linde, R.Q., Lammertse, P., Frederiksen, E., and Ruiterm B. 2002. The Haptic Master, a new highperformance haptic interface. Proc. of Eurohaptics '02.Google ScholarGoogle Scholar
  35. Velazquez. R. 2010. Wearable Assistive Devices for the Blind. Chapter 17 in A. Lay-Ekuakille & S.C. Mukhopadhyay (Eds.), Wearable and Autonomous Biomedical Devices and Systems for Smart Environment: Issues and Characterization, LNEE 75, Springer.Google ScholarGoogle Scholar
  36. Wang, Q. and Hayward, V. 2010. Biomechanically optimized distributed transducer based on lateral skin deformation. The International Journal of Robotics Research. 29, 4. 323--335. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Wellman, P., and Howe, R.D. 1995. Towards realistic vibrotactile display in virtual environments. In Proc. of ASME, 57, 2. 713--718.Google ScholarGoogle Scholar
  38. Wijntjes, M. W., Sato, A., Hayward, V. and Kappers, A. M. Local surface orientation dominates haptic curvature discrimination. IEEE Haptics 2(2), 94--102. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Yano, H., Taniguchi, S., and Iwata, H. 2015. Shape and Friction Recognition of 3D Virtual Objects by Using 2DOF Indirect Haptic Interface. In Proc. of IEEE World Haptics Conference (WHC '15). 202--207.Google ScholarGoogle Scholar

Index Terms

  1. NormalTouch and TextureTouch: High-fidelity 3D Haptic Shape Rendering on Handheld Virtual Reality Controllers

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in
          • Published in

            cover image ACM Conferences
            UIST '16: Proceedings of the 29th Annual Symposium on User Interface Software and Technology
            October 2016
            908 pages
            ISBN:9781450341899
            DOI:10.1145/2984511

            Copyright © 2016 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 16 October 2016

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article

            Acceptance Rates

            UIST '16 Paper Acceptance Rate79of384submissions,21%Overall Acceptance Rate842of3,967submissions,21%

            Upcoming Conference

            UIST '24

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader