skip to main content
"smart" sensors for civil infrastructure systems
Publisher:
  • University of Notre Dame
  • 275 Fitzpatrick Hall Notre Dame, IN
  • United States
ISBN:978-0-542-09664-8
Order Number:AAI3173216
Pages:
205
Bibliometrics
Skip Abstract Section
Abstract

“Smart” sensors with embedded microprocessors and wireless communication links have the potential to change fundamentally the way civil infrastructure systems are monitored, controlled, and maintained. A 2002 National Research Council report noted that the use of networked systems of embedded computers and sensors throughout society could well dwarf all previous milestones in the information revolution. Structural health monitoring and control systems (SHM/C) represent one of the primary applications for new sensor technologies. This dissertation explores the use of the smart sensor technology for the SHM/C of civil infrastructure.

Following a brief introduction to smart sensor technology, a literature review of the devices developed to date is presented. The research herein concentrates on the Mote platform developed at the University of California at Berkeley. This platform offers for the first time an open software/hardware environment for a broad range of smart sensing research.

The suitability of the accelerometer on the existing Berkeley-platform for civil engineering applications is then investigated. A new sensor board (called Tadeo) is developed that has a high sensitivity accelerometer, a microphone, a thermistor, and photo resistor. The accelerometer employed overcomes many of the deficiencies of the sensor on the available boards. However, a number of the challenges still remaining are identified.

An agent-based paradigm is proposed that supports implementation of SHM/C algorithms on networks of smart sensors. Because traditional algorithms for SHM/C assume that data is centrally processed, they cannot be implemented directly in the distributed computing environment employed by smart sensors. To demonstrate the efficacy of this approach, a reference implementation of the agent-based framework is provided for a SHM system employing the AR-ARX algorithm. Numerical examples indicate that the framework is effective.

This initial research demonstrates the feasibility of using smart sensors for SHM of civil infrastructure. A new sensor board is developed and shown to meet the needs of the application. An agent-based framework for smart sensing is proposed and shown to perform well. This research begins to lay the foundation from which the many opportunities offered by smart sensing technology can be pursued.

Contributors
  • University of Notre Dame
  • University of Illinois Urbana-Champaign

Recommendations