skip to main content
10.1145/640075.640092acmconferencesArticle/Chapter ViewAbstractPublication PagesrecombConference Proceedingsconference-collections
Article

Model-based inference of haplotype block variation

Published:10 April 2003Publication History

ABSTRACT

The uneven recombination structure of human DNA has been highlighted by several recent studies. Knowledge of the haplotype blocks generated by this phenomenon can be applied to dramatically increase the statistical power of genetic mapping. Several criteria have already been proposed for identifying these blocks, all of which require haplotypes as input. We propose a comprehensive statistical model of haplotype block variation and show how the parameters of this model can be learned from haplotypes and/or unphased genotype data. Using real-world SNP data, we demonstrate that our approach can be used to resolve genotypes into their constituent haplotypes with greater accuracy than previously known methods.

References

  1. Goldstein D. B. Islands of linkage disequilibrium. Nature Genetics, 29(2):109--11, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  2. Jeffreys A. et al. Intensely punctate meiotic recombination in the class II region of the major histocompatibility complex. Nature Genetics, 29(2):217--222, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  3. Daly M. J. et al. High-resolution haplotype structure in the human genome. Nature Genetics, 29(2):229--32, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  4. Patil N. et al. Blocks of limited haplotype diversity revealed by high-resolution scanning of human chromosome 21. Science, 294(5547):1719--23, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  5. Gabriel S. B. et al. The Structure of Haplotype Blocks in the Human Genome. Science, 296(5576):2225--9, 2002.Google ScholarGoogle ScholarCross RefCross Ref
  6. Zhang K. et al. A dynamic programming algorithm for haplotype block partitioning. PNAS USA, 99(11):7335--9, 2002.Google ScholarGoogle ScholarCross RefCross Ref
  7. Michalatos-Beloin S. et al. Molecular haplotyping of genetic markers 10 kb apart by allele-specific long-range PCR. Nucleic Acids Research, 24(23):4841--3, 1996.Google ScholarGoogle ScholarCross RefCross Ref
  8. Woolley A. T. et al. Direct haplotyping of kilobase-size DNA using carbon nanotube probes. Nature Biotechnology, 18(7):760--3, 2000.Google ScholarGoogle ScholarCross RefCross Ref
  9. Lizardi P. M. et al. Mutation detection and single-molecule counting using isothermal rolling-circle amplification. Nature Genetics, 19(3):225--32, 1999.Google ScholarGoogle ScholarCross RefCross Ref
  10. Douglas J. A. et al. Experimentally-derived haplotypes substantially increase the efficiency of linkage disequilibrium studies. Nature Genetics, 28(4):361--4, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  11. Clark A. G. Inference of haplotypes from PCR-amplified samples of diploid populations. Molecular Biology and Evolution, 7(2):111--22, 1990.Google ScholarGoogle Scholar
  12. Gusfield D. Inference of haplotypes from samples of diploid populations: complexity and algorithms. Journal of Computational Biology, 8(3):305--23, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  13. Excoffier L. & Slatkin M. Maximum-likelihood estimation of molecular haplotype frequencies in a diploid population. Molecular Biology and Evolution, 12(5):921--7, 1995.Google ScholarGoogle Scholar
  14. Long J. C. et al. An E-M algorithm and testing strategy for multiple-locus haplotypes. American Journal of Human Genetics, 56(3):799--810, 1995.Google ScholarGoogle Scholar
  15. Templeton A. R. A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping. II. The analysis of natural populations. Genetics, 120:1145--1154, 1988.Google ScholarGoogle Scholar
  16. Stephens M. et al. A new statistical method for haplotype reconstruction from population data. American Journal of Human Genetics, 68(4):978--89, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  17. Niu T. et al. Bayesian haplotype inference for multiple linked single-nucleotide polymorphisms. American Journal of Human Genetics, 70(1):157--69, 2002.Google ScholarGoogle ScholarCross RefCross Ref
  18. Pearl J. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, San Mateo, CA, 2nd edition, 1988. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Jensen F. V. An Introduction to Bayesian Networks. Springer Verlag, New York, NY, 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Dechter R. Bucket elimination: A unifying framework for probabilistic inference. In Proceedings of the 12th Conference on Uncertainty in Artificial Intelligence (UAI-96), pages 211--219, August 1--4 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Lauritzen S. L. The EM algorithm for graphical association models with missing data. Computational Statistics and Data Analysis, 19:191--201, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. G. H. Hardy. Mendelian proportions in a mixed population. Science, 18:49--50, 1908.Google ScholarGoogle ScholarCross RefCross Ref
  23. Templeton A. R. et al. Recombinational and mutational hotspots within the human lipoprotein lipase gene. American Journal of Human Genetics, 66(1):69--83, 2000.Google ScholarGoogle ScholarCross RefCross Ref
  24. Fullerton S. et al. Apolipoprotein E variation at the sequence haplotype level: implications for the origin and maintenance of a major human polymorphism. American Journal of Human Genetics, 67(4):881--900, 2000.Google ScholarGoogle ScholarCross RefCross Ref
  25. Nachman M.W. & Crowell S.L. Estimate of the mutation rate per nucleotide in humans. Genetics, 156(1):297--304, 2000.Google ScholarGoogle Scholar
  26. Rissanen J. Modeling by shortest data description. Automatica, 14:465--471, 1978.Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Schwarz, G. Estimating the dimension of a model. Annals of Statistics, 6(2):461--4, 1978.Google ScholarGoogle ScholarCross RefCross Ref
  28. Shannon C. E. A mathematical theory of communication. Bell Systems Technical Journal, 27:379--423, 623--656, 1948.Google ScholarGoogle ScholarCross RefCross Ref
  29. Rissanen J. A universal prior for integers and estimation by minimum description length. Annals of Statistics, 11:416--431, 1983.Google ScholarGoogle ScholarCross RefCross Ref
  30. Ardlie K.G. et al. Patterns of linkage disequilibrium in the human genome. Nature Reviews Genetics, 3(7):299--309, 2002.Google ScholarGoogle ScholarCross RefCross Ref
  31. Rieder M. J. et al. Sequence variation in the human angiotensin converting enzyme. Nature Genetics, 22(1):59--62, 1999.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Model-based inference of haplotype block variation

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          RECOMB '03: Proceedings of the seventh annual international conference on Research in computational molecular biology
          April 2003
          352 pages
          ISBN:1581136358
          DOI:10.1145/640075

          Copyright © 2003 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 10 April 2003

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • Article

          Acceptance Rates

          RECOMB '03 Paper Acceptance Rate35of175submissions,20%Overall Acceptance Rate148of538submissions,28%

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader