skip to main content
10.5555/581896.581916acmotherconferencesArticle/Chapter ViewAbstractPublication PagesegConference Proceedingsconference-collections
Article

A tone mapping algorithm for high contrast images

Published:26 July 2002Publication History

ABSTRACT

A new method is presented that takes as an input a high dynamic range image and maps it into a limited range of luminance values reproducible by a display device. There is significant evidence that a similar operation is performed by early stages of human visual system (HVS). Our approach follows functionality of HVS without attempting to construct its sophisticated model. The operation is performed in three steps. First, we estimate local adaptation luminance at each point in the image. Then, a simple function is applied to these values to compress them into the required display range. Since important image details can be lost during this process, we then re-introduce details in the final pass over the image.

References

  1. Frans J. J. Blommaert and Jean-Bernard Martens. An object-oriented model for brightness perception. Spatial Vision, 5(1):15--41, 1990.Google ScholarGoogle ScholarCross RefCross Ref
  2. K. Chiu, M. Herf, P. Shirley, S. Swamy, C. Wang, and K. Zimmerman. Spatially nonuniform scaling functions for high contrast images. In Proceedings of Graphics Interface '93, pages 245--253, 1993.Google ScholarGoogle Scholar
  3. B. Cleland and A. Freeman. Visual adaptation is highly localized in the cat's retina. J. Physiology, 404:591--611, 1988.Google ScholarGoogle ScholarCross RefCross Ref
  4. Paul E. Debevec and Jitendra Malik. Recovering high dynamic range radiance maps from photographs. Proceedings of SIGGRAPH 97, pages 369--378, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Fredo Durand and Julie Dorsey. Interactive tone mapping. 11th Eurographics Workshop on Rendering, pages 219--230, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. James Ferwerda. Elements of early vision for computer graphics. IEEE Computer Graphics and Applications, 21(5):22--33, 2001. Google ScholarGoogle ScholarCross RefCross Ref
  7. James A. Ferwerda, Sumant N. Pattanaik, Peter Shirley, and Donald P. Greenberg. An adaptation model for realistic image sysnthesis. In SIGGRAPH '96 Proceedings, pages 249--258. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Rafael C. Gonzalez and Richard E. Woods. Digital Image Processing. Prentice Hall, Englewood Cliffs, NJ, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. D. J. Jobson, Z. Rahman, and G. A. Woodell. A multi-scale retinex for bridging the gap between color images and the human observation of scenes. IEEE Transactions on Image Processing, 6:965--976, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Edwin H. Land. The retinex theory of color vision. The Scientific American, (12):108--128, December 1977.Google ScholarGoogle Scholar
  11. Gregory Ward Larson, Holly Rushmeier, and Christine Piatko. A visibility matching tone reproduction operator for high dynamic range scenes. IEEE Transactions on Visualization and Computer Graphics, 3(4):291--306, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. P. Moon and D. Spencer. The visual effect of non-uniform surrounds. Journal of the Optical Society of America, 35:233--248, 1945.Google ScholarGoogle ScholarCross RefCross Ref
  13. E. Reinhard M. Stark, P. Shirley, and J. Ferwerda. Photographic tone reproduction for digital images. Proceedings of SIGGRAPH, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Stephen E. Palmer. Vision Science: Photons to Phenomenology. MIT Press, Cambridge, MA, 1999.Google ScholarGoogle Scholar
  15. Sumant N. Pattanaik, James A. Ferwerda, Mark Fairchild, and Donald P. Greenberg. A multiscale model of adaptation and spatial vision for realistic image display. In SIGGRAPH '98 Proceedings, pages 287--298. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Sumanta N. Pattanaik, Jack E. Tumblin, Hector Yee, and Donald P. Greenberg. Time-dependent visual adaptation for realistic image display. Proceedings of SIGGRAPH, pages 47--54, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. E. Peli. An object-oriented model for brightness perception. Journal of the Optical Society of America, A, 7:2032--2040, 1990.Google ScholarGoogle ScholarCross RefCross Ref
  18. A. Scheel, M. Stamminger, and Hans-Peter Seidel. Tone reproduction for interactive walkthroughs. Proceedings of Eurographics Conference, pages 301--312, August 2000.Google ScholarGoogle ScholarCross RefCross Ref
  19. C. Schlick. Quantization techniques for visualization of high dynamic range pictures. 5th Eurographics Workshop on Rendering, pages 7--20, 1995.Google ScholarGoogle ScholarCross RefCross Ref
  20. R. Shapley and C. Enroth-Cugell. Visual adaptation and retinal gain-controls. Progress in Retinal and Eye Research, 3:263--346, 1984.Google ScholarGoogle ScholarCross RefCross Ref
  21. Greg Spencer, Peter S. Shirley, Kurt Zimmerman, and Donald P. Greenberg. Physically-based glare effects for digital images. Proceedings of SIGGRAPH, pages 325--334, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. T. Tanaka and N. Ohnishi. Painting-like image emphasis based on human vision svstems. Proceedings of Eurographics Conference, pages 253--260, 1997.Google ScholarGoogle Scholar
  23. Jack Tumblin, Jessica K. Hodgins, and Brian K. Guenter. Two methods for display of high contrast images. ACM Transactions on Graphics, 18(1):56--94, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Jack Tumblin and Holly E. Rushmeier. Tone reproduction for realistic images. IEEE Computer Graphics and Applications, 13(6):42--48, November 1993. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Jack Tumblin and Greg Turk. Lcis: A boundary hierarchy for detail-preserving contrast reduction. Proceedings of SIGGRAPH 99, pages 83--90. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. H. Wallah. Brightness constancy and the nature of achromatic colors. Journal of Experimental Psychology, 38:310--324, 1948.Google ScholarGoogle ScholarCross RefCross Ref
  27. Greg Ward. A contrast-based scalefactor for luminance display. In Paul Heckbert, editor, Graphics Gems IV, pages 415--421. Academic Press, Boston, 1994. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Gregory J. Ward. The RADIANCE lighting simulation and rendering system. Computer Graphics, 28(2):459--472, July 1994. ACM Siggraph '94 Conference Proceedings. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Lance Willams. Pyramidal parametrics. Computer Graphics, 17(3), July 1983. ACM Siggraph '83 Conference Proceedings. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. A tone mapping algorithm for high contrast images

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Other conferences
        EGRW '02: Proceedings of the 13th Eurographics workshop on Rendering
        July 2002
        336 pages
        ISBN:1581135343

        Publisher

        Eurographics Association

        Goslar, Germany

        Publication History

        • Published: 26 July 2002

        Check for updates

        Qualifiers

        • Article