skip to main content
article

A survey of graph layout problems

Authors Info & Claims
Published:01 September 2002Publication History
Skip Abstract Section

Abstract

Graph layout problems are a particular class of combinatorial optimization problems whose goal is to find a linear layout of an input graph in such way that a certain objective cost is optimized. This survey considers their motivation, complexity, approximation properties, upper and lower bounds, heuristics and probabilistic analysis on random graphs. The result is a complete view of the current state of the art with respect to layout problems from an algorithmic point of view.

References

  1. Aarts, E. and Lenstra, J. K., Eds. 1997. Local Search in Combinatorial Optimization. Wiley, New York.]] Google ScholarGoogle Scholar
  2. Adolphson, D. 1977. Single machine job sequencing with precedence constraints. SIAM J. Comput. 6, 40--54.]]Google ScholarGoogle Scholar
  3. Adolphson, D. and Hu, T. C. 1973. Optimal linear ordering. SIAM J. Appl. Mathem. 25, 3, 403--423.]]Google ScholarGoogle Scholar
  4. Alon, N. and Milman, V. 1985. λ1, isoperimetric inequalities for graphs and superconcentrators. J. Combinatorial Theory. Series B 38, 73--88.]]Google ScholarGoogle Scholar
  5. Àlvarez, C., Cases, R., Díaz, J., Petit, J., and Serna, M. 2000. Routing trees problems on random graphs. In Approximation and Randomized Algorithms in Communication Networks, J. Rolim et al., Ed. ICALP Workshops 2000. Carleton Scientific, 99--111.]]Google ScholarGoogle Scholar
  6. Àlvarez, C., Díaz, J., and Serna, M. 1998. Intervalizing colored graphs is NP-complete for caterpillars with hair length 2. Technical report LSI 98-9-R, Dept. de Llenguatges i Sistemes Informàtics, Univ. Politècnica de Catalunya.]]Google ScholarGoogle Scholar
  7. Àlvarez, C., Díaz, J., and Serna, M. 2001. The hardness of intervalizing four colored caterpillars. Discrete Mathematics 235, 19--27.]]Google ScholarGoogle Scholar
  8. Àlvarez, C. and Serna, M. 1999. The proper interval colored graph problem for caterpillar trees. Technical report LSI 99-12-R, Dept. de Llenguatges i Sistemes Informàtics, Univ. Politècnica de Catalunya.]]Google ScholarGoogle Scholar
  9. Arora, S., Frieze, A., and Kaplan, H. 1996. A new rounding procedure for the assignment problem with applications to dense graphs arrangements. In Proceedings of the 37th Annual Symposium on Foundations of Computer Science. 21--30.]] Google ScholarGoogle Scholar
  10. Arora, S., Karger, D., and Karpinski, M. 1999. Polynomial time approximation schemes for dense instances of NP-hard problems. J. Comput. Syst. Sci. 58, 1, 193--210.]] Google ScholarGoogle Scholar
  11. Assman, S. F., Peck, G. W., Syslo, M. M., and Zak, J. 1981. The bandwidth of caterpillars with hair of lengths 1 and 2. SIAM J. Algebraic and Discrete Meth. 2, 387--393.]]Google ScholarGoogle Scholar
  12. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., and Protasi, M. 1999. Complexity and Approximation. Springer-Verlag, Berlin.]] Google ScholarGoogle Scholar
  13. Azizoğlu, C. and Eğecioğlu, Ö. 2002. The isoperimetric number and the bisection width of generalized cylinders. Discrete Mathematics. To appear.]]Google ScholarGoogle Scholar
  14. Balasubramanian, R., Fellows, M., and Raman, V. 1998. An improved fixed-parameter algorithm for vertex cover. Information Proccessing Letters 65, 163--168.]] Google ScholarGoogle Scholar
  15. Barnard, S. T., Pothen, A., and Simon, H. 1995. A spectral algorithm for envelope reduction of sparse matrices. Numerical Linear Algebra with Applications 2, 4, 317--334.]]Google ScholarGoogle Scholar
  16. Barnard, S. T. and Simon, H. D. 1994. A fast multilevel implementation of recursive spectral bisection for partitioning unstructured problems. Concurrency: Practice and Experience 6, 101--107.]]Google ScholarGoogle Scholar
  17. Barth, D., Pellegrini, F., Raspaud, A., and Roman, J. 1995. On bandwidth, cutwidth, and quotient graphs. RAIRO Informatique Théorique et Applications. 29, 6, 487--508.]]Google ScholarGoogle Scholar
  18. Battiti, R. and Bertossi, A. 1999. Greedy, prohibition, and reactive heuristics for graph partitioning. IEEE Trans. Comput. 48, 4, 361--385.]] Google ScholarGoogle Scholar
  19. Berger-Wolf, T. Y. and Reingold, E. M. 2002. Index assignment for multichannel communication under failure. IEEE Trans. Inform. Th.]]Google ScholarGoogle Scholar
  20. Bernhart, F. and Kainen, P. C. 1979. The book thickness of a graph. Journal of Combinatorial Theory. Series B 27, 3, 320--331.]]Google ScholarGoogle Scholar
  21. Berry, J. W. and Goldberg, M. K. 1999. Path optimization for graph partitioning problems. Discrete Applied Mathematics 90, 27--50.]] Google ScholarGoogle Scholar
  22. Bezrukov, S. L. 1999. Edge isoperimetric problems on graphs (a survey). In Graph Theory and Combinatorial Biology (Balatonlelle, 1996), L. Lovasz, A. Gyarfas, G. O. H. Katona, A. Recski, and L. Szekely, Eds. János Bolyai Math. Soc., 157--197.]]Google ScholarGoogle Scholar
  23. Bezrukov, S. L., Chavez, J. D., Harper, L. H., Röttger, M., and Schroeder, U.-P. 2000a. The congestion of n-cube layout on a rectangular grid. Discrete Mathematics 213, 1-3, 13--19.]] Google ScholarGoogle Scholar
  24. Bezrukov, S. L., Elsässer, R., Monien, B., Preis, R., and Tillich, J.-P. 2000b. New spectral lower bounds on the bisection width of graphs. In Graph-Theoretic Concepts in Computer Science, U. Brandes and D. Wagner, Eds. Lecture Notes in Computer Science, vol. 1928. Springer-Verlag, 23--34.]] Google ScholarGoogle Scholar
  25. Bhatt, S. N. and Leighton, F. T. 1984. A framework for solving VLSI graph layout problems. J. Comput. Syst. Sci. 28, 300--343.]]Google ScholarGoogle Scholar
  26. Bilski, T. 1993. Embedding graphs in books with prespecified order of vertices. Poznańskie Towarzystwo Przyjaciól Nauk. Wydzial Nauk Technicznych. Prace Komisji Automatyki i Informatyki. Studia z Automatyki 18, 5--12.]]Google ScholarGoogle Scholar
  27. Blache, G., Karpinski, M., and Wirtgen, J. 1998. On approximation intractability of the bandwidth problem. Technical report TR98-014, Electronic Colloquium on Computational Complexity.]]Google ScholarGoogle Scholar
  28. Blum, A., Konjevod, G., Ravi, R., and Vempala, S. 2000. Semi-definite relaxations for minimum bandwidth and other vertex-ordering problems. Theoretical Computer Science 235, 1, 25--42.]] Google ScholarGoogle Scholar
  29. Bodlaender, H., Fellows, M. R., and Hallet, M. T. 1994. Beyond NP-completeness for problems of bounded width: hardness for the W-hierarchy. In Proceedings of the 26th Annual ACM Symposium on the Theory of Computing. 449--458.]] Google ScholarGoogle Scholar
  30. Bodlaender, H. L. 1993. A tourist guide through treewidth. Acta Cybernetica 11, 1-2, 1--21.]]Google ScholarGoogle Scholar
  31. Bodlaender, H. L. 1996. A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput. 25, 6, 1305--1317.]] Google ScholarGoogle Scholar
  32. Bodlaender, H. L. and de Fluiter, B. 1996. On intervalizing k-colored graphs for DNA physical mapping. Discrete Applied Mathematics 71, 1-3, 55--77.]] Google ScholarGoogle Scholar
  33. Bodlaender, H. L., Gilbert, J. R., Hafsteinsson, H., and Kloks, T. 1995a. Approximating treewidth, pathwidth, and minimum elimination tree height. J. Algor. 18, 238--255.]] Google ScholarGoogle Scholar
  34. Bodlaender, H. L., Kloks, T., and Kratsch, D. 1995b. Treewidth and pathwidth of permutation graphs. SIAM J. Discrete Mathem. 8, 4, 606--616.]] Google ScholarGoogle Scholar
  35. Bodlaender, H. L. and Möhring, R. H. 1993. The pathwidth and treewidth of cographs. SIAM J. Discrete Mathem. 6, 2, 181--188.]] Google ScholarGoogle Scholar
  36. Bollobás, B. 1985. Random Graphs. Academic Press, London.]]Google ScholarGoogle Scholar
  37. Bollobás, B. and Leader, I. 1991. Edge--isoperimetric inequalities in the grid. Combinatorica 4, 299--314.]]Google ScholarGoogle Scholar
  38. Boppana, R. 1987. Eigenvalues and graph bisection: An average case analysis. In Proceedings of the 28th Annual Symposium on Foundations of Computer Science. 280--285.]]Google ScholarGoogle Scholar
  39. Bornstein, C. and Vempala, S. 2002. Flow metrics. In Latin American Theoretical Informatics LATIN'02. Lecture Notes in Computer Science. To appear.]] Google ScholarGoogle Scholar
  40. Botafogo, R. A. 1993. Cluster analysis for hypertext systems. In Proceedings of the 16th Annual International ACM-SIGIR Conference on Research and Development in Information Retrieval, R. Korfhage, E. M. Rasmussen, and P. Willett, Eds. 116--125.]] Google ScholarGoogle Scholar
  41. Bui, T., Chaudhuri, S., Leighton, T., and Sipser, M. 1987. Graph bisection algorithms with good average case behavior. Combinatorica 7, 171--191.]] Google ScholarGoogle Scholar
  42. Bui, T. N. and Peck, A. 1992. Partitioning planar graphs. SIAM J. Comput. 21, 2, 203--215.]] Google ScholarGoogle Scholar
  43. Caprara, A., Malucelli, F., and Pretolani, D. 2002. On bandwidth-2 graphs. Discrete Applied Mathematics. 117, 1--13.]]Google ScholarGoogle Scholar
  44. Carson, T. and Impagliazzo, R. 2001. Hill climbing finds random planted bisections. In Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms. 903--909.]] Google ScholarGoogle Scholar
  45. Chang, G. J. and Lai, Y.-L. 2001. On the profile of the corona of two graphs. Manuscript (provided by S. Bezrukov).]]Google ScholarGoogle Scholar
  46. Chinn, P., Chvátalová, J., Dewdney, A., and Gibbs, N. 1982. The bandwidth problem for graphs and matrices---A survey. Journal of Graph Theory 6, 223--254.]]Google ScholarGoogle Scholar
  47. Chinn, P. Z., Lin, Y. X., and Yuan, J. J. 1992. The bandwidth of the corona of two graphs. In Proceedings of the Twenty-third Southeastern International Conference on Combinatorics, Graph Theory, and Computing. Congressus Numerantium, vol. 91. Utilitas Math., 141--152.]]Google ScholarGoogle Scholar
  48. Chinn, P. Z., Lin, Y. X., Yuan, J. J., and Williams, K. 1995. Bandwidth of the composition of certain graph powers. Ars Combinatoria 39, 167--173.]]Google ScholarGoogle Scholar
  49. Chirravuri, S., Bhandarkar, S. M., and Arnold, J. 1996. Parallel computing of physical maps---A comparative study in SIMD and MIMD parallelism. Journal of Computational Biology 3, 4, 503--528.]]Google ScholarGoogle Scholar
  50. Chung, F. R. K. 1988. Labelings of Graphs. Academic Press, San Diego, 151--168.]]Google ScholarGoogle Scholar
  51. Chung, F. R. K., Leighton, F. T., and Rosenberg, A. L. 1987. Embedding graphs in books: a layout problem with applications to VLSI design. SIAM Journal on Algebraic and Discrete Methods 8, 1, 33--58.]] Google ScholarGoogle Scholar
  52. Chung, M., Makedon, F., Sudborough, I. H., and Turner, J. 1982. Polynomial time algorithms for the min cut problem on degree restricted trees. In Proceedings of the 23th Annual Symposium on Foundations of Computer Science. 262--271.]]Google ScholarGoogle Scholar
  53. Chvátalová, J. 1975. Optimal labelling of a product of two paths. Discrete Mathematics 11, 249--253.]]Google ScholarGoogle Scholar
  54. Chvátalová, J., Dewdney, A., Gibbs, N., and Korfhage, R. 1975. The bandwidth problem for graphs---A collection of recent results. Technical report CS 75020, Dept. of Computer Science, Southern Methodist University.]]Google ScholarGoogle Scholar
  55. Condon, A. and Karp, R. M. 2001. Algorithms for graph partitioning on the planted partition model. Random Structures & Algorithms 18, 2, 116--140.]] Google ScholarGoogle Scholar
  56. Crescenzi, P., Silvestri, R., and Trevisan, L. 2001. On weighted vs unweighted versions of combinatorial optimization problems. Information and Computation 167, 1, 10--26.]] Google ScholarGoogle Scholar
  57. Cuthill, E. H. and Mckee, J. 1969. Reducing the bandwidth of sparse symmetric matrices. In Proceedings of the 24th ACM National Conference. 157--172.]] Google ScholarGoogle Scholar
  58. Deo, N., Krishnamoorthy, M. S., and Langston, M. A. 1987. Exact and approximate solutions for the gate matrix layout problem. IEEE Transactions on Computer Aided Design 6, 1, 79--84.]]Google ScholarGoogle Scholar
  59. Dewdney, A. K. 1976. The bandwidth of a graph---some recent results. In Proceedings of the Seventh Southeastern Conference on Combinatorics, Graph Theory, and Computing. Number 17 in Congressus Numerantium. Utilitas Math., 273--288.]]Google ScholarGoogle Scholar
  60. Díaz, J. 1979. The Δ-operator. In Fundamentals of Computation Theory, L. Budach, Ed. Akademie--Verlag, 105--111.]]Google ScholarGoogle Scholar
  61. Díaz, J. 1992. Graph layout problems. In Mathematical Foundations of Computer Science 1992, I. M. Havel and V. Koubek, Eds. Lecture Notes in Computer Sciences, vol. 629. Springer--Verlag, 14--23.]] Google ScholarGoogle Scholar
  62. Díaz, J., Gibbons, A., Pantziou, G., Serna, M., Spirakis, P., and Torán, J. 1997a. Parallel algorithms for the minimum cut and the minimum length tree layout problems. Theoretical Computer Science 181, 2, 267--288.]] Google ScholarGoogle Scholar
  63. Díaz, J., Gibbons, A. M., Paterson, M. S., and Torán, J. 1991. The Minsumcut problem. In Algorithms and Data Structures, F. Dehen, R. J. Sack, and N. Santoro, Eds. Lecture Notes in Computer Science, vol. 519. Springer-Verlag, 65--79.]]Google ScholarGoogle Scholar
  64. Díaz, J., Penrose, M. D., Petit, J., and Serna, M. 2000. Convergence theorems for some layout measures on random lattice and random geometric graphs. Combinatorics, Probability and Computing 9, 6, 489--511.]] Google ScholarGoogle Scholar
  65. Díaz, J., Penrose, M. D., Petit, J., and Serna, M. 2001a. Approximating layout problems on random geometric graphs. J. Algorithms 39, 1, 78--116.]] Google ScholarGoogle Scholar
  66. Díaz, J., Petit, J., and Serna, M. 2001b. Faulty random geometric networks. Parallel Processing Letters 10, 4, 343--357.]]Google ScholarGoogle Scholar
  67. Díaz, J., Petit, J., Serna, M., and Trevisan, L. 2001c. Approximating layout problems on random graphs. Discrete Mathematics 235, 1--3, 245--253.]]Google ScholarGoogle Scholar
  68. Díaz, J., Serna, M., Spirakis, P., and Torán, J. 1997b. Paradigms for Fast Parallel Approximability. Cambridge University Press, Cambridge.]] Google ScholarGoogle Scholar
  69. Diekmann, R., Lüling, R., and Monien, B. 1994. Communication throughput of interconnection networks. In Mathematical Foundations of Computer Science 1994, I. Privara, B. Rovan, and P. Ruzicka, Eds. Lecture Notes in Computer Science, vol. 841. Springer--Verlag, 72--86.]] Google ScholarGoogle Scholar
  70. Diekmann, R., Lüling, R., Monien, B., and Spräner, C. 1996. Combining helpful sets and parallel simulated annealing for the graph-partitioning problem. Parallel Algorithms and Applications 8, 61--84.]]Google ScholarGoogle Scholar
  71. Diekmann, R., Monien, B., and Preis, R. 1995. Using helpful sets to improve graph bisections. In Interconnection Networks and Mapping and Scheduling Parallel Computations, D. F. Hsu, A. L. Rosenberg, and D. Sotteau, Eds. DIMACS Series in Discrete Mathematics and Theoretical Computer Science. AMS Press, 57--73.]]Google ScholarGoogle Scholar
  72. Diks, K., Djidjev, H., Sýroka, O., and Vr&tbreve;o, I. 1993. Edge separators for planar and outerplanar graphs with applications. Journal of Algorithms 14, 258--279.]] Google ScholarGoogle Scholar
  73. Ding, G. and Oporowski, B. 1995. Some results on tree decomposition of graphs. J. Graph Theory 20, 4, 481--499.]] Google ScholarGoogle Scholar
  74. Dinneen, M. J. 1995. Bounded cmbinatorial width and forbidden substructures. Ph.D. thesis, Computer Science Dept., University of Victoria.]] Google ScholarGoogle Scholar
  75. Downey, R. G. and Fellows, M. R. 1995. Fixed-parameter tractability and completeness II: On completeness for W{1}. Theoretical Computer Science 141, 1-2, 109--131.]] Google ScholarGoogle Scholar
  76. Downey, R. G. and Fellows, M. R. 1999. Parameterized Complexity. Springer-Verlag, New York.]]Google ScholarGoogle Scholar
  77. Dunagan, J. and Vempala, S. 2001. On Euclidean embeddings and bandwidth minimization. In Approximation, Randomization and Combinatorial Optimization: Algorithms and Techniques, M. Goemans, K. Jansen, J. Rolim, and L. Trevisan, Eds. Lecture Notes in Computer Science, vol. 2129. Springer-Verlag, 229--240.]] Google ScholarGoogle Scholar
  78. Ellis, J., Sudborough, I. H., and Turner, J. 1979. The vertex separation and search number of a graph. Information and Computation 113, 50--79.]] Google ScholarGoogle Scholar
  79. Elsner, U. 1997. Graph partitioning---A survey. Technical Report 393, Technische Universitat Chemnitz.]]Google ScholarGoogle Scholar
  80. Even, G., Naor, J., Rao, S., and Schieber, B. 1999. Fast approximate graphs algorithms. SIAM J. Comput. 28, 6, 2187--2214.]] Google ScholarGoogle Scholar
  81. Even, G., Naor, J., Rao, S., and Schieber, B. 2000. Divide-and-conquer approximation algorithms via spreading metrics. J. ACM 47, 4, 585--616.]] Google ScholarGoogle Scholar
  82. Even, S. and Itai, A. 1971. Queues, stacks, and graphs. In Theory of Machines and Computations. Academic Press, 71--86.]]Google ScholarGoogle Scholar
  83. Even, S. and Shiloach, Y. 1975. NP-completeness of several arrangement problems. Technical Report TR-43, Dept. of Computer Science, Technion, Haifa.]]Google ScholarGoogle Scholar
  84. Everstine, G. C. 1979. A comparison of three resequencing algorithms for the reduction of matrix profile and wavefront. Int. J. Num. Meth. Eng. 14, 837--853.]]Google ScholarGoogle Scholar
  85. Feige, U. 2000. Approximating the bandwidth via volume respecting embeddings. J. Comput. Syst. Sci. 60, 3, 510--539.]] Google ScholarGoogle Scholar
  86. Feige, U. and Krauthgamer, R. 1998. Improved performance guarantees for bandwidth minimization heuristics (draft). Technical Report, Computer Science Dept., Weizmann Inst. Tech.]]Google ScholarGoogle Scholar
  87. Feige, U. and Krauthgamer, R. 2002. A polylogarithmic approximation of the minimum bisection. SIAM J. Comput., To appear.]] Google ScholarGoogle Scholar
  88. Feige, U., Krauthgamer, R., and Nissim, K. 2002. Approximating the minimum bisection size. Discrete Applied Mathematics.]]Google ScholarGoogle Scholar
  89. Fellows, M. R., Hallet, M. T., and Wareham, W. T. 1993. DNA physical mapping: Three ways difficult. In Algorithms-ESA'93, T. Lengauer, Ed. Number 726 in Lecture Notes in Computer Science. Springer-Verlag, 157--168.]] Google ScholarGoogle Scholar
  90. Fellows, M. R. and Langston, M. A. 1988. Layout permutation problems and well-partially-ordered sets. In Advanced Research in VLSI. MIT Press, Cambridge, MA, 315--327.]] Google ScholarGoogle Scholar
  91. Fellows, M. R. and Langston, M. A. 1992. On well-partial-order theory and its application to combinatorial problems of VLSI design. SIAM J. Discrete Mathem. 5, 1, 117--126.]] Google ScholarGoogle Scholar
  92. Fellows, M. R. and Langston, M. A. 1994. On search, decision, and the efficiency of polynomial-time algorithms. J. Comput. Syst. Sci. 49, 3, 769--779.]] Google ScholarGoogle Scholar
  93. Fishburn, P., Tetali, P., and Winkler, P. 2000. Optimal linear arrangement of a rectangular grid. Discrete Mathematics 213, 123--139.]] Google ScholarGoogle Scholar
  94. Ford, L. R. and Fulkerson, D. R. 1962. Flows in Networks. Princeton University Press.]]Google ScholarGoogle Scholar
  95. Frieze, A. and Kannan, R. 1996. The regularity lemma and approximation schemes for dense problems. In Proceedings of the 37th Annual Symposium on Foundations of Computer Science. 12--20.]] Google ScholarGoogle Scholar
  96. Gallian, J. 1998. A dynamic survey of graph labeling. Electronic Journal of Combininatorics 5, 1.]]Google ScholarGoogle Scholar
  97. Garey, M. R., Graham, R. L., Johnson, D. S., and Knuth, D. 1978. Complexity results for bandwidth minimization. SIAM J. Appl. Mathem. 34, 477--495.]]Google ScholarGoogle Scholar
  98. Garey, M. R. and Johnson, D. S. 1979. Computers and Intractability. A Guide to the Theory of NP-Completeness. Freeman and Company, New York.]] Google ScholarGoogle Scholar
  99. Garey, M. R., Johnson, D. S., Miller, G. L., and Papadimitriou, C. H. 1980. The complexity of coloring circular arcs and chords. SIAM J. Algeb. Discrete Meth. 1, 2, 216--227.]]Google ScholarGoogle Scholar
  100. Garey, M. R., Johnson, D. S., and Stockmeyer, L. 1976. Some simplified NP-complete graph problems. Theoretical Computer Science 1, 237--267.]]Google ScholarGoogle Scholar
  101. Gavril, F. 1977. Some NP-complete problems on graphs. In 11th Conference on Information Sciences and Systems. John Hopkins University, Baltimore, 91--95.]]Google ScholarGoogle Scholar
  102. Gibbs, N. E., Poole, Jr., W. G., and Stockmeyer, P. K. 1976. An algorithm for reducing the bandwidth and profile of a sparse matrix. SIAM J. Num. Anal. 13, 2, 236--250.]]Google ScholarGoogle Scholar
  103. Glover, F. and Laguna, M. 1997. Tabu Search, second ed. Kluwer, Boston.]] Google ScholarGoogle Scholar
  104. Goldberg, M. and Miller, Z. 1988. A parallel algorithm for bisection width in trees. Computers & Mathematics with Applications 15, 4, 259--266.]]Google ScholarGoogle Scholar
  105. Goldberg, M. K. and Klipker, I. A. 1976. An algorithm for minimal numeration of tree vertices. Sakharth. SSR Mecn. Akad. Moambe 81, 3, 553--556. In Russian.]]Google ScholarGoogle Scholar
  106. Goldberg, P. W., Golumbic, M. C., Kaplan, H., and Shamir, R. 1995. Four strikes against physical mapping of DNA. J. Comput. Biol. 2, 1, 139--152.]]Google ScholarGoogle Scholar
  107. Golovach, P. A. 1997. The total vertex separation number of a graph. Diskretnaya Matematika 9, 4, 86--91. In Russian.]]Google ScholarGoogle Scholar
  108. Golovach, P. A. and Fomin, F. V. 1998. The total vertex separation number and the profile of graphs. Diskretnaya Matematika 10, 1, 87--94. In Russian.]]Google ScholarGoogle Scholar
  109. Golumbic, M. C. 1980. Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York.]] Google ScholarGoogle Scholar
  110. Golumbic, M. C., Kaplan, H., and Shamir, R. 1994. On the complexity of DNA physical mapping. Advances in Applied Mathematics 15, 203--215.]] Google ScholarGoogle Scholar
  111. Golumbic, M. C., Kaplan, H., and Shamir, R. 1995. Graph sandwich problems. J. Algor. 19, 449--473.]] Google ScholarGoogle Scholar
  112. Golumbic, M. C. and Shamir, R. 1993. Complexity and algorithms for reasoning about time: A graph theoretical approach. J. ACM 40, 1108--1113.]] Google ScholarGoogle Scholar
  113. Gomory, R. E. and Hu, T. C. 1975. Multi-Terminal Flows in a Network. Studies in Mathematics, vol. 11. MAA, 172--199.]]Google ScholarGoogle Scholar
  114. Greenlaw, R., Hoover, H. J., and Ruzzo, W. L. 1995. Limits to Parallel Computation: P-Completeness Theory. Oxford University Press, New York.]] Google ScholarGoogle Scholar
  115. Grimmett, G. R. 1999. Percolation, second ed. Springer-Verlag, Heidelberg.]]Google ScholarGoogle Scholar
  116. Gupta, A. 2001. Improved bandwidth approximation for trees and chordal graphs. J. Algor. 40, 1, 24--36.]] Google ScholarGoogle Scholar
  117. Gurari, E. and Sudborough, I. H. 1984. Improved dynamic programming algorithms for the bandwidth minimization and the mincut linear arrangement problem. J. Algor. 5, 531--546.]]Google ScholarGoogle Scholar
  118. Gustedt, J. 1993. On the pathwidth of chordal graphs. Discrete Applied Mathematics 45, 3, 233--248.]] Google ScholarGoogle Scholar
  119. Hager, W. W. 2002. Minimizing the profile of a symmetric matrix. SIAM J. Sci. Comput. 23, 5, 1799--1816.]] Google ScholarGoogle Scholar
  120. Hansen, M. D. 1989. Approximation algorithms for geometric embeddings in the plane with applications to parallel processing problems. In 30th Annual Symposium on Foundations of Computer Science. 604--609.]]Google ScholarGoogle Scholar
  121. Haralambides, J. and Makedon, F. 1997. Approximation algorithms for the bandwidth minimization problem for a large class of trees. Theory of Computing Systems 30, 67--90.]]Google ScholarGoogle Scholar
  122. Haralambides, J., Makedon, F., and Monien, B. 1991. Bandwidth minimization: an approximation algorithm for caterpillars. Mathematical Systems Theory 24, 169--177.]]Google ScholarGoogle Scholar
  123. Harary, F. 1967. Problem 16. In Graph Theory and Computing, M. Fiedler, Ed. Czechoslovak Academy Sciences, 161.]]Google ScholarGoogle Scholar
  124. Harper, L. H. 1964. Optimal assignments of numbers to vertices. J. SIAM 12, 1, 131--135.]]Google ScholarGoogle Scholar
  125. Harper, L. H. 1966. Optimal numberings and isoperimetric problems on graphs. J. Combinatorial Theory 1, 3, 385--393.]]Google ScholarGoogle Scholar
  126. Harper, L. H. 1970. Chassis layout and isoperimetric problems. Technical Report SPS 37--66, vol II, Jet Propulsion Laboratory.]]Google ScholarGoogle Scholar
  127. Harper, L. H. 1977. Stabilization and the edgesum problem. Ars Combinatoria 4, 225--270.]]Google ScholarGoogle Scholar
  128. Harper, L. H. 2001. On the bandwidth of a hamming graph. Manuscript.]]Google ScholarGoogle Scholar
  129. Heath, L. S., Leighton, F. T., and Rosenberg, A. L. 1992. Comparing queues and stacks as mechanisms for laying out graphs. SIAM J. Discrete Mathem. 5, 3, 398--412.]] Google ScholarGoogle Scholar
  130. Heath, L. S. and Pemmaraju, S. V. 1997. Stack and queue layouts of posets. SIAM J. Discrete Mathem. 10, 4, 599--625.]] Google ScholarGoogle Scholar
  131. Heath, L. S. and Pemmaraju, S. V. 1999. Stack and queue layouts of directed acyclic graphs. II. SIAM J. Comput. 28, 5, 1588--1626.]] Google ScholarGoogle Scholar
  132. Heath, L. S., Pemmaraju, S. V., and Ribbens, C. J. 1993. Sparse Matrix-Vector Multiplication on a Small Linear Array. Springer-Verlag.]]Google ScholarGoogle Scholar
  133. Heath, L. S., Pemmaraju, S. V., and Trenk, A. N. 1999. Stack and queue layouts of directed acyclic graphs. I. SIAM J. Comput. 28, 4, 1510--1539.]] Google ScholarGoogle Scholar
  134. Heath, L. S. and Rosenberg, A. L. 1992. Laying out graphs using queues. SIAM J. Comput. 21, 5, 927--958.]] Google ScholarGoogle Scholar
  135. Heckmann, R., Klasing, R., Monien, B., and Unger, W. 1998. Optimal embedding of complete binary trees into lines and grids. J. Parallel and Distributed Computing 49, 1, 40--56.]] Google ScholarGoogle Scholar
  136. Helmberg, C., Rendl, F., Mohar, B., and Poljak, S. 1995. A spectral approach to bandwidth and separator problems in graphs. Linear and Multilinear Algebra 39, 1-2, 73--90.]]Google ScholarGoogle Scholar
  137. Hendrich, U. and Stiebitz, M. 1992. On the bandwidth of graph products. J. Inform. Proc. Cybernetics 28, 113--125.]] Google ScholarGoogle Scholar
  138. Hendrickson, B. and Leland, R. 1997. The Chaco user's guide: version 2.0. Technical Report SAND94--2692, Sandia National Laboratories. ftp://ftp.cs.sandia.gov/pub/papers/bahendr/guide.ps.gz.]]Google ScholarGoogle Scholar
  139. Hromkovi&cbreve;, J. and Monien, B. 1992. The Bisection Problem for Graphs of Degree 4 (Configuring Transputer Systems). Teubner, Stuttgart, 215--233.]]Google ScholarGoogle Scholar
  140. Hu, T. C. 1974. Optimum communication spanning trees. SIAM J. Comput. 3, 188--195.]]Google ScholarGoogle Scholar
  141. Janson, S., Luczak, T., and Rucinski, A. 2000. Random Graphs. Wiley, New York.]]Google ScholarGoogle Scholar
  142. Jerrum, M. and Sorkin, G. 1998. The Metropolis algorithm for graph bisection. Discrete Applied Mathematics 82, 1-3, 155--175.]] Google ScholarGoogle Scholar
  143. Johnson, D. S., Aragon, C. R., McGeoch, L. A., and Schevon, C. 1989. Optimization by simulated annealing: an experimental evaluation; part I, graph partitioning. Operations Research 37, 6, 865--892.]] Google ScholarGoogle Scholar
  144. Johnson, D. S., Lenstra, J. K., and Kan, A. H. G. R. 1978. The complexity of the network design problem. Networks 8, 4, 279--285.]]Google ScholarGoogle Scholar
  145. Juels, A. 1996. Topics in black-box combinatorial optimization. Ph.D. thesis, University of California at Berkeley.]] Google ScholarGoogle Scholar
  146. Juvan, M. and Mohar, B. 1992. Optimal linear labelings and eigenvalues of graphs. Discrete Applied Mathematics 36, 2, 153--168.]] Google ScholarGoogle Scholar
  147. Kadluczka, P. and Wala, K. 1995. Tabu search and genetic algorithms for the generalized graph partitioning problem. Control and Cybernetics 24, 4, 459--476.]]Google ScholarGoogle Scholar
  148. Kaplan, H. and Shamir, R. 1996. Pathwidth, bandwidth and completion problems to proper interval graphs with small cliques. SIAM J. Comput. 25, 3, 540--561.]] Google ScholarGoogle Scholar
  149. Kaplan, H. and Shamir, R. 1999. Bounded degree interval sandwich problems. Algorithmica 24, 2, 96--104.]]Google ScholarGoogle Scholar
  150. Kaplan, H., Shamir, R., and Tarjan, R. E. 1999. Tractability of parameterized completion problems on chordal, strongly chordal, and proper interval graphs. SIAM J. Comput. 28, 5, 1906--1922.]] Google ScholarGoogle Scholar
  151. Karger, D. R. 1999. A randomized fully polynomial time approximation scheme for the all-terminal network reliability problem. SIAM J. Comput. 29, 2, 492--514.]] Google ScholarGoogle Scholar
  152. Karp, R. M. 1993. Mapping the genome: some combinatorial problems arising in molecular biology. In Proceedings of the 25th Annual ACM Symposium on the Theory of Computing. 278--285.]] Google ScholarGoogle Scholar
  153. Karpinski, M., Wirtgen, J., and Zelikovsky, A. 1997. An approximating algorithm for the bandwidth problem on dense graphs. Technical Report TR 97-017, Electronic Colloquium on Computational Complexity.]]Google ScholarGoogle Scholar
  154. Karypis, G. 2001. Metis's home page. Web page. http://www-users.cs.umn.edu/∼karypis/metis.]]Google ScholarGoogle Scholar
  155. Kendall, D. G. 1969. Incidence matrices, interval graphs, and seriation in archeology. Pacific J. Mathem. 28, 565--570.]]Google ScholarGoogle Scholar
  156. Kernighan, B. W. and Lin, S. 1970. An efficient heuristic procedure for partitioning graphs. Bell System Technical Journal 49, 291--307.]]Google ScholarGoogle Scholar
  157. King, I. P. 1970. An automatic reordering schema for simultaneous equations derived from network system. Int. J. Numer. Meth. Eng. 2, 523--533.]]Google ScholarGoogle Scholar
  158. Kinnersley, N. G. 1992. The vertex separation number of a graph equals its path-width. Information Processing Letters 42, 6, 345--350.]] Google ScholarGoogle Scholar
  159. Kirousis, L. M. and Papadimitriou, C. H. 1986. Searching and pebbling. Theoretical Computer Science 47, 205--216.]] Google ScholarGoogle Scholar
  160. Klasing, R. 1998. The relationship between the gossip complexity in vertex-disjoint paths mode and the vertex bisection width. Discrete Applied Mathematics 83, 229--246.]] Google ScholarGoogle Scholar
  161. Kleitman, D. J. and Vohra, R. V. 1990. Computing the bandwidth of interval graphs. SIAM J. Discrete Mathem. 3, 3, 373--375.]] Google ScholarGoogle Scholar
  162. Kloks, T., Kratsch, D., and Müller, H. 1998. Bandwidth of chain graphs. Information Processing Letters 68, 6, 313--315.]] Google ScholarGoogle Scholar
  163. Kloks, T., Kratsch, D., and Müller, H. 1999. Approximating the bandwidth for asteroidal triple-free graphs. J. Algor. 32, 1, 41--57.]]Google ScholarGoogle Scholar
  164. Kratsch, D. 1987. Finding the minimum bandwidth of an interval graph. Information and Computation 74, 2, 140--158.]] Google ScholarGoogle Scholar
  165. Kumfert, G. and Pothen, A. 1997. Two improved algorithms for reducing the envelope and wavefront. BIT 37, 3, 001--032.]]Google ScholarGoogle Scholar
  166. Kuo, D. and Chang, G. J. 1994. The profile minimization problem in trees. SIAM J. Comput. 23, 71--81.]] Google ScholarGoogle Scholar
  167. Lai, Y.-L. 1997. Bandwidth, edgesum and profile of graphs. Ph.D. thesis, Dept. of Computer Science, Western Michigan Univ.]] Google ScholarGoogle Scholar
  168. Lai, Y.-L. 2001. On the profile of the tensor product of path with complete bipartite graphs. Manuscript (provided by S. Bezrukov).]]Google ScholarGoogle Scholar
  169. Lai, Y.-L., Liu, J., and Williams, K. 1994. Bandwidth for the sum of k graphs. Ars Combinatoria 37, 149--155.]]Google ScholarGoogle Scholar
  170. Lai, Y.-L. and Williams, K. 1994. The edgesum of the sum of k sum deterministic graphs. In Proceedings of the Twenty-fifth Southeastern International Conference on Combinatorics, Graph Theory and Computing. Congressus Numerantium, vol. 102. Utilitas Math., 231--236.]]Google ScholarGoogle Scholar
  171. Lai, Y.-L. and Williams, K. 1995. Bandwidth of the strong product of paths and cycles. In Proceedings of the Twenty-sixth Southeastern International Conference on Combinatorics, Graph Theory and Computing. Congressus Numerantium, vol. 109. Utilitas Math., 123--128.]]Google ScholarGoogle Scholar
  172. Lai, Y.-L. and Williams, K. 1997. On bandwidth for the tensor product of paths and cycles. Discrete Applied Mathematics. 73, 2, 133--141.]] Google ScholarGoogle Scholar
  173. Lai, Y.-L. and Williams, K. 1999. A survey of solved problems and applications on bandwidth, edgesum, and profile of graphs. J. Graph Theory 31, 2, 75--94.]]Google ScholarGoogle Scholar
  174. Lang, K. and Rao, S. 1993. Finding near-optimal cuts: An empirical evaluation. In Proceedings of the 4th Annual ACM-SIAM Symposium on Discrete Algorithms. 212--221.]] Google ScholarGoogle Scholar
  175. Leighton, F. T. 1993. Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes. Morgan Kaufmann, San Mateo.]] Google ScholarGoogle Scholar
  176. Leighton, T. and Rao, S. 1999. Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms. J. ACM 46, 6, 787--832.]] Google ScholarGoogle Scholar
  177. Leiserson, C. E. 1980. Area-efficient graph layouts (for VLSI). In Proceedings of the 21st Annual Symposium on Foundations of Computer Science. 270--281.]]Google ScholarGoogle Scholar
  178. Leland, R. and Hendrickson, B. 1994. An empirical study of static load balancing algorithms. In Scalable High-Performance Computing Conference. IEEE Computer Society Press, 682--685.]]Google ScholarGoogle Scholar
  179. Lengauer, T. 1981. Black-white pebbles and graph separation. Acta Informatica 16, 465--475.]]Google ScholarGoogle Scholar
  180. Lengauer, T. 1982. Upper and lower bounds on the complexity of the min-cut linear arrangements problem on trees. SIAM J. Algeb. Discrete Meth. 3, 99--113.]]Google ScholarGoogle Scholar
  181. Lepin, V. V. 1986. Profile minimization problem of matrices and graphs. Academy of Sciences of Belarus. Institute of Mathematics. 33, 269. In Russian.]]Google ScholarGoogle Scholar
  182. Lewis, R. 1994. Simulated annealing for profile and fill reduction of sparse matrices. Int. J. Num. Meth. Eng. 37, 6.]]Google ScholarGoogle Scholar
  183. Lin, Y. X. 1994. Two-dimensional bandwidth problem. In Combinatorics, Graph Theory, Algorithms and Applications (Beijing, 1993). World Sci. Publishing, 223--232.]]Google ScholarGoogle Scholar
  184. Lin, Y. X. and Yuan, J. 1994a. Profile minimization problem for matrices and graphs. Acta Mathematicae Applicatae Sinica. English Series 10, 1, 107--112.]]Google ScholarGoogle Scholar
  185. Lin, Y. X. and Yuan, J. J. 1994b. Profile minimization problem for matrices and graphs. Acta Mathematicae Applicatae Sinica. English Series. Yingyong Shuxue Xuebao 10, 1, 107--112.]]Google ScholarGoogle Scholar
  186. Lindsey, J. H. 1964. Assignments of numbers to vertices. American Mathematical Monthly 71, 508--516.]]Google ScholarGoogle Scholar
  187. Lipton, R. J. and Tarjan, R. E. 1979. A separator theorem for planar graphs. SIAM J. Appl. Mathem. 36, 177--189.]]Google ScholarGoogle Scholar
  188. Liu, H. E. and Yuan, J. J. 1995. The cutwidth problem for graphs. Gaoxiao Yingyong Shuxue Xuebao. Applied Mathematics. A Journal of Chinese Universities. Series A 10, 3, 339--348. In Chinese.]]Google ScholarGoogle Scholar
  189. Liu, J. 1992. On bandwidth sum for the composition of paths and cycles. Technical Report Rep/92-06, Dept. of Computer Science, Western Michigan Univ.]]Google ScholarGoogle Scholar
  190. Liu, J. and Williams, K. 1995. On bandwidth and edgesum for the composition of two graphs. Discrete Mathematics 143, 1-3, 159--166.]] Google ScholarGoogle Scholar
  191. Luczak, M. L. and McDiarmid, C. 2001. Bisecting sparse random graph. Random Structures & Algorithms 18, 31--38.]] Google ScholarGoogle Scholar
  192. MacGregor, R. M. 1978. On partitioning a graph: a theoretical and empirical study. Ph.D. thesis, University of California, Berkeley.]] Google ScholarGoogle Scholar
  193. Mahesh, R., Rangan, C. P., and Srinivasan, A. 1991. On finding the minimum bandwidth of interval graphs. Information and Computation 95, 2, 218--224.]] Google ScholarGoogle Scholar
  194. Mai, J. H. 1996. Profiles of some classes of condensable graphs. J. Syst. Sci. Mathem. Sci. Xitong Kexue yu Shuxue 16, 2, 141--148.]]Google ScholarGoogle Scholar
  195. Mai, J. H. and Luo, H. P. 1984. Some theorems on the bandwidth of a graph. Acta Mathematicae Applicatae Sinica. Yingyong Shuxue Xuebao 7, 1, 86--95.]]Google ScholarGoogle Scholar
  196. Makedon, F., Papadimitriou, C. H., and Sudborough, I. H. 1985. Topological bandwidth. SIAM J. Algeb. Discrete Meth. 6, 3, 418--444.]]Google ScholarGoogle Scholar
  197. Makedon, F., Sheinwald, D., and Wolfsthal, Y. 1993. A simple linear-time algorithm for the recognition of bandwidth-2 biconnected garphs. Information Processing Letters 46, 103--107.]] Google ScholarGoogle Scholar
  198. Makedon, F. and Sudborough, I. H. 1989. On minimizing width in linear layouts. Discrete Applied Mathematics 23, 3, 243--265.]] Google ScholarGoogle Scholar
  199. Manabe, Y., Hagihara, K., and Tokura, N. 1984. The minimum bisection widths of the cube-connected cycles graph and cube graph. Systems-Computers-Controls. The Transactions of the Institute of Electronics and Communication Engineers of Japan 15, 6, 9--18.]]Google ScholarGoogle Scholar
  200. Miller, Z. 1991. Multidimensional bandwidth in random graphs. In Graph Theory, Combinatorics, and Applications. Vol. 2 (Kalamazoo, MI, 1988). Wiley, New York, 861--870.]]Google ScholarGoogle Scholar
  201. Mitchison, G. and Durbin, R. 1986. Optimal numberings of an n × n array. SIAM J. Algeb. Discrete Meth. 7, 4, 571--582.]] Google ScholarGoogle Scholar
  202. Mohar, B. and Poljak, S. 1993. Eigenvalues in combinatorial optimization. In Combinatorial and Graph-Theoretical Problems in Linear Algebra, R. A. Brualdi, S. Friedland, and V. Klee, Eds. IMA Volumes in Mathematics and its Applications, vol. 50. Springer-Verlag, 107--151.]]Google ScholarGoogle Scholar
  203. Monien, B. 1986. The bandwidth minimization problem for caterpillars with hair length 3 is NP-complete. SIAM J. Algeb. Discrete Meth. 7, 4, 505--512.]] Google ScholarGoogle Scholar
  204. Monien, B. and Sudborough, I. H. 1988. Min Cut is NP-complete for edge weighted trees. Theoretical Computer Science 58, 1-3, 209--229.]] Google ScholarGoogle Scholar
  205. Monien, B. and Sudborough, I. H. 1990. Embedding one interconnection network in another. In Computational Graph Theory, G. Tinhofer, E. Mayr, H. Noltemeier, and M. M. Syslo, Eds. Computing Supplementa, vol. 7. Springer-Verlag, 257--282.]]Google ScholarGoogle Scholar
  206. Muradyan, D. 1999. Proceedings of Computer Science & Information Technologies Conference, Armenia.]]Google ScholarGoogle Scholar
  207. Muradyan, D. O. 1982. Minimal numberings of a two-dimensional cylinder. Akademiya Nauk Armyanskoĭ SSR. Doklady 75, 3, 114--119. In Russian.]]Google ScholarGoogle Scholar
  208. Muradyan, D. O. 1985. Some estimates for the length of an arbitrary graph. Mat. Voprosy Kibernet. Vychisl. Tekhn.14, 79--86, 126. In Russian.]]Google ScholarGoogle Scholar
  209. Muradyan, D. O. 1986. A polynomial algorithm for finding the bandwidth of interval graphs. Akademiya Nauk Armyanskoĭ SSR. Doklady 82, 2, 64--66. In Russian.]]Google ScholarGoogle Scholar
  210. Muradyan, D. O. and Piliposyan, T. E. 1980. Minimal numberings of vertices of a rectangular lattice. Akad. Nauk. Armjan. SRR 1, 70, 21--27. In Russian.]]Google ScholarGoogle Scholar
  211. Muradyan, D. O. and Piliposyan, T. E. 1980. The problem of finding the length and width of the complete p-partite graph. Uchen. Zapiski Erevan. Gosunivers. 2, 18--26. In Russian.]]Google ScholarGoogle Scholar
  212. Mutzel, P. 1995. A polyhedral approach to planar augmentation and related problems. In Algorithms---ESA'95, P. Spirakis, Ed. Lecture Notes in Computer Science, vol. 979. Springer-Verlag, 497--507.]] Google ScholarGoogle Scholar
  213. Nakano, K. 1994. Linear layouts of generalized hypercubes. In Graph-Theoretic Concepts in Computer Science, J. van Leeuwen, Ed. Lecture Notes in Computer Science, vol. 790. Springer-Verlag, 364--375.]] Google ScholarGoogle Scholar
  214. Niepel, L. and Tomasta, P. 1981. Elevation of a graph. Czechoslovak Mathematical Journal 31(106), 3, 475--483.]]Google ScholarGoogle Scholar
  215. Papadimitriou, C. 1976. The NP-completeness of the bandwidth minimization problem. Computing 16, 263--270.]]Google ScholarGoogle Scholar
  216. Papadimitriou, C. H. and Sideri, M. 1996. The bisection width of grid graphs. Mathematical Systems Theory 29, 2, 97--110.]]Google ScholarGoogle Scholar
  217. Penrose, M. 1995. Single linkage clustering and continuum percolation. J. Multivariate Anal. 53, 94--109.]] Google ScholarGoogle Scholar
  218. Penrose, M. 2000. Vertex ordering and partitioning problems for random spatial graphs. The Annals of Applied Probability 10, 517--538.]]Google ScholarGoogle Scholar
  219. Petit, J. 1998. Approximation heuristics and benchmarkings for the MinLA problem. In Alex '98---Building Bridges Between Theory and Applications, R. Battiti and A. Bertossi, Eds. 112--128.]]Google ScholarGoogle Scholar
  220. Petit, J. 2000. Combining spectral sequencing and parallel simulated annealing for the minLA problem. Technical Report LSI-01-13-R, Departament de Llenguatges i Sistemes Informàtics, Universitat Politècnica de Catalunya.]]Google ScholarGoogle Scholar
  221. Petit, J. 2001a. Experiments for the MinLAP problem. Technical Report LSI-R01-7-R, Departament de Llenguatges i Sistemes Informàtics, Universitat Politècnica de Catalunya.]]Google ScholarGoogle Scholar
  222. Petit, J. 2001b. Layout problems. Ph.D. thesis, Universitat Politècnica de Catalunya.]]Google ScholarGoogle Scholar
  223. Preis, R. and Diekmann, R. 1996. The Party partitioning library user guide. Technical Report TR-RSFB-96-024, Universität Paderborn.]]Google ScholarGoogle Scholar
  224. Rao, S. and Richa, A. W. 1998. New approximation techniques for some ordering problems. In Proceedings of the 9th ACM-SIAM Symposium on Discrete Algorithms. 211--218.]] Google ScholarGoogle Scholar
  225. Raspaud, A., Sýkora, O., and Vr&tbreve;o, I. 1995. Cutwidth of the de Bruijn graph. RAIRO Informatique Théorique et Applications 29, 6, 509--514.]]Google ScholarGoogle Scholar
  226. Raspaud, A., Sýkora, O., and Vr&tbreve;o, I. 2000. Congestion and dilation, similarities and differences---a survey. In Proceedings 7th International Colloquium on Structural Information and Communication Complexity. Carleton Scientific, 269--280.]]Google ScholarGoogle Scholar
  227. Ravi, R., Agrawal, A., and Klein, P. 1991. Ordering problems approximated: single-processor scheduling and interval graph completition. In Automata, Languages and Programming, J. Leach, B. Monien, and M. Rodriguez, Eds. Lecture Notes in Computer Science, vol. 510. Springer-Verlag, 751--762.]] Google ScholarGoogle Scholar
  228. Robertson, N. and Seymour, P. D. 1985. Graph minors---a survey. In Surveys in Combinatorics. Cambridge University Press, 153--171.]]Google ScholarGoogle Scholar
  229. Rolim, J., Sýkora, O., and Vr˘to, I. 1995. Optimal cutwidths and bisection widths of 2- and 3-dimensional meshes. In Graph Theoretic Concepts in Computer Science. Lecture Notes in Computer Science, vol. 1017. Springer, 252--264.]] Google ScholarGoogle Scholar
  230. Rolim, J., Tvrdík, J., Trdli&cbreve;ka, J., and Vr&tbreve;o, I. 1998. Bisecting de Bruijn and Kautz graphs. Discrete Applied Mathematics 85, 87--97.]] Google ScholarGoogle Scholar
  231. Saad, Y. 1996. Iterative Methods for Sparse Linear Systems. PWS Publishing Company, Boston.]] Google ScholarGoogle Scholar
  232. Saxe, J. B. 1980. Dynamic-programming algorithms for recognizing small-bandwidth graphs in polynomial time. SIAM J. Algeb. Discrete Meth. 1, 4, 363--369.]]Google ScholarGoogle Scholar
  233. Seymour, P. D. 1995. Packing directed circuits fractionally. Combinatorica 15, 2, 281--288.]]Google ScholarGoogle Scholar
  234. Seymour, P. D. and Thomas, R. 1994. Call routing and the ratcatcher. Combinatorica 14, 2, 217--241.]]Google ScholarGoogle Scholar
  235. Shahrokhi, F., Sýkora, O., Székely, L. A., and Vr&tbreve;o, I. 1997. Crossing numbers: bounds and applications. János Bolyai Math. Soc., Budapest, 179--206.]]Google ScholarGoogle Scholar
  236. Shahrokhi, F., Sýkora, O., Székely, L. A., and Vr&tbreve;o, I. 2001. On bipartite drawings and the linear arrangement problem. SIAM J. Comput. 30, 6, 1773--1789.]] Google ScholarGoogle Scholar
  237. Shiloach, Y. 1979. A minimum linear arrangement algorithm for undirected trees. SIAM J. Comput. 8, 1, 15--32.]]Google ScholarGoogle Scholar
  238. Shing, M. T. and Hu, T. C. 1986. Computational complexity of layout problems. In Layout Design and Verification, T. Ohtsuki, Ed. Advances in CAD for VLSI, vol. 4. North--Holland, Amsterdam, 267--294.]]Google ScholarGoogle Scholar
  239. Simon, H. D. and Teng, S.-H. 1997. How good is recursive bisection? SIAM J. Sci. Comput. 18, 5, 1436--1445.]] Google ScholarGoogle Scholar
  240. Skodinis, K. 2000. Computing optimal linear layouts of trees in linear time. In Algorithms---ESA 2000, M. Paterson, Ed. Lecture Notes in Computer Science, vol. 1879. Springer-Verlag, 403--414.]] Google ScholarGoogle Scholar
  241. Soumyanath, K. and Deogun, J. S. 1990. On the bisection width of partial k-trees. In Proceedings of the Twentieth Southeastern Conference on Combinatorics, Graph Theory, and Computing. Congressus Numerantium, vol. 74. Utilitas Math., 25--37.]]Google ScholarGoogle Scholar
  242. Spielman, D. A. and Teng, S.-H. 1996. Spectral partitioning works: Planar graphs and finite element meshes. In Proceedings of the 37th Annual Symposium on Foundations of Computer Science. 96--105.]] Google ScholarGoogle Scholar
  243. Sprague, A. P. 1994. An O(n log n) algorithm for bandwidth of interval graphs. SIAM J. Discrete Mathem. 7, 2, 213--220.]] Google ScholarGoogle Scholar
  244. Stacho, L. and Vr&tbreve;o, I. 1998. Bisection width of transposition graphs. Discrete Applied Mathematics 84, 1-3, 221--235.]] Google ScholarGoogle Scholar
  245. Sýkora, O. and Vr&tbreve;o, I. 1993. Edge separators for graphs of bounded genus with applications. Theoretical Computer Science 112, 419--429.]] Google ScholarGoogle Scholar
  246. Tewarson, R. 1973. Sparse Matrices. Academic Press, New York.]]Google ScholarGoogle Scholar
  247. Thilikos, D. M., Serna, M. J., and Bodlaender, H. L. 2000. Constructive linear time algorithms for small cutwidth and carving-width. In ISAAC 2000 Algorithms and Computation, D. T. Lee and S.-H. Teng, Eds. Lecture Notes in Computer Science, vol. 1969. Springer-Verlag, 192--203.]] Google ScholarGoogle Scholar
  248. Thilikos, D. M., Serna, M. J., and Bodlaender, H. L. 2001. A polynomial time algorithm for the cutwidth of bounded degree graphs with small treewidth. In Algorithms, ESA 2001, F. Meyer auf der Heide, Ed. Lecture Notes in Computer Science, vol. 2161. Springer-Verlag, 380--390.]] Google ScholarGoogle Scholar
  249. Thompson, C. D. 1979. Area-time complexity in VLSI design. In Proceedings of the 11th Annual ACM Symposium on the Theory of Computing. 81--88.]] Google ScholarGoogle Scholar
  250. Turner, J. S. 1986. On the probable performance of heuristics for bandwidth minimization. SIAM J. Comput. 15, 2, 561--580.]] Google ScholarGoogle Scholar
  251. Unger, W. 1998. The complexity of the approximation of the bandwidth problem. In 37th Annual Symposium on Foundations of Computer Science. 82--91.]] Google ScholarGoogle Scholar
  252. Vazirani, V. V. 2001. Approximation Algorithms. Springer, Berlin.]] Google ScholarGoogle Scholar
  253. Vr&tbreve;o, I. 2000. Cutwidth of the r-dimensional mesh of d-ary trees. RAIRO Informatique Théorique et Applications 34, 6, 515--519.]]Google ScholarGoogle Scholar
  254. Vr&tbreve;o, I. 2002. Crossing numbers of graphs: A bibliography. ftp://ftp.ifi.savba.sk/pub/imrich/crobib.ps.gz.]]Google ScholarGoogle Scholar
  255. Williams, K. 1993. On the minimum sum of the corona of two graphs. In Proceedings of the Twenty-fourth Southeastern International Conference on Combinatorics, Graph Theory, and Computing. Congressus Numerantium, vol. 94. Utilitas Math., 43--49.]]Google ScholarGoogle Scholar
  256. Williams, K. 1994. On bandwidth and edgesum for the tensor product of paths with complete bipartite graphs. In Proceedings of the Twenty-fifth Southeastern International Conference on Combinatorics, Graph Theory and Computing. Congressus Numerantium, vol. 102. Utilitas Math., 183--190.]]Google ScholarGoogle Scholar
  257. Williams, K. 1996. On bandwidth for the tensor product of paths and cycles with complete graphs. Bulletin of the Institute of Combinatorics and its Applications 16, 41--48.]]Google ScholarGoogle Scholar
  258. Wu, B. Y., Lancia, G., Bafna, V., Chao, K.-M., Ravi, R., and Tang, C. Y. 1999. A polynomial time approximation scheme for minimum routing cost spanning trees. SIAM J. Comput. 29, 3, 761--778.]] Google ScholarGoogle Scholar
  259. Yannakakis, M. 1985. A polynomial algorithm for the min-cut linear arrangement of trees. J. ACM 32, 4, 950--988.]] Google ScholarGoogle Scholar
  260. Yuan, J., Lin, Y., Liu, Y., and Wang, S. 1998. NP-completeness of the profile problem and the fill-in problem on cobipartite graphs. J. Mathem. Study 31, 3, 239--243.]]Google ScholarGoogle Scholar
  261. Zhou, S. and Yuan, J. 1998. Harper-type lower bounds and the bandwidths of the compositions of graphs. Discrete Mathematics 181, 1-3, 255--266.]] Google ScholarGoogle Scholar

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in

Full Access

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader