skip to main content
article

Spherical averages and applications to spherical splines and interpolation

Published:01 April 2001Publication History
Skip Abstract Section

Abstract

This article introduces a method for computing weighted averages on spheres based on least squares minimization that respects spherical distance. We prove existence and uniqueness properties of the weighted averages, and give fast iterative algorithms with linear and quadratic convergence rates. Our methods are appropriate to problems involving averages of spherical data in meteorological, geophysical, and astronomical applications. One simple application is a method for smooth averaging of quaternions, which generalizes Shoemake's spherical linear interpolation.The weighted averages methods allow a novel method of defining Bézier and spline curves on spheres, which provides direct generalization of Bézier and B-spline curves to spherical spline curves. We present a fast algorithm for spline interpolation on spheres. Our spherical splines allow the use of arbitrary knot positions; potential applications of spherical splines include smooth quaternion curves for applications in graphics, animation, robotics, and motion planning.

References

  1. ALFELD, P., NEAMTU, M., AND SHUMAKER, L. L. 1996. Bernstein-Bezier polynomials on spheres and sphere-like surfaces. Comput. Aided. Geom. Des. 13, 333-349. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. ARVO, J. 1995. Startified sampling of spherical triangles. In Proceedings of SIGGRAPH'95. ACM, New York, pp. 437-438. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. BARONTI, M., CASINI, E., AND PAPINI, P. L. 1997. Centroids, centers and medians: What is the difference? Geometriae Dedicata 68, 157-168.Google ScholarGoogle ScholarCross RefCross Ref
  4. BARR, A. H., CURRIN, B., GABRIEL,S.,AND HUGHES, J. 1992. Smooth interpolation of orientations with angular velocity constraints using quaternions. In Computer Graphics: SIGGRAPH'92 Conference Proceedings. ACM, NewYork, pp. 313-320. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. BROWN,J.L.AND WORSEY, A. J. 1992. Problems with defining barycentric coordinates for the sphere. Mathematical Modelling and Numerical Analysis (Modelisation mathematique et Analyse numerique) 26, 37-49.Google ScholarGoogle Scholar
  6. CLARK,R.M.AND THOMPSON, R. 1984. Statistical comparison of palaeomagnetic directional records from lake sediment. Geophys. J. Roy. Astr. Soc. 76, 337-368.Google ScholarGoogle ScholarCross RefCross Ref
  7. COXETER, H. S. M. 1946. Quaternions and reflections. Am. Math. Monthly 53, 136-146.Google ScholarGoogle ScholarCross RefCross Ref
  8. DAM, E. B., KOCH, M., AND LILLHOLM, M. 1998. Quaternions, interpolation and animation. Tech. Rep. DIKU 98/5, Institute of Computer Science, University of Copenhagen, Copenhagen Denmark. http://www.diku.dk/students/myth/quat.html.Google ScholarGoogle Scholar
  9. DUFF, T. 1986. Splines in animation and modeling. In SIGGRAPH'86 Course Notes on State of the Art in Image Synthesis, July, ACM, New York.Google ScholarGoogle Scholar
  10. FARIN, G. 1993. Curves and Surfaces for Computer Aided Geometric Design: A Practical Guide. 3rd ed. (contains chapters by P. Bezier and W. Boehm), Academic Press, Boston, Mass. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. FISHER,N.I.AND LEWIS, T. 1985. A note on spherical splines. J. Roy. Stat Soc. B 47, 482- 488.Google ScholarGoogle Scholar
  12. GABRIEL,S.AND KAJIYA, K. 1985. Spline interpolation in curved space. In SIGGRAPH'85 Course Notes on State of the Art Image Synthesis, ACM, NewYork, pp. 1-14.Google ScholarGoogle Scholar
  13. GE,Q.J.AND RAVANI, B. 1994. Computer aided geometric design of motion interpolants. Trans. ASME: J. Mech. Des, 756-762.Google ScholarGoogle ScholarCross RefCross Ref
  14. GROSS, O. 1964. The rondezvous value of a metric space. In Advances in Game Theory, Princeton University Press, Princeton, N. J., 49-53.Google ScholarGoogle Scholar
  15. HART,J.C.,FRANCIS,G.K.,AND KAUFFMAN, L. H. 1994. Visualizing quaternion rotation. ACM Trans. Graph. 13, 256-276. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. JUPP, P. E. 1987. Fitting smooth paths to spherical data. Appl. Stat. 36, 34-46.Google ScholarGoogle ScholarCross RefCross Ref
  17. JUTTLER, B. 1994. Visualization of moving objects using dual quaternion curves. Comput. Graph. 18, 315-326.Google ScholarGoogle ScholarCross RefCross Ref
  18. JUTTLER,B.AND WAGNER, M. G. 1996. Computer-aided design with spatial rational B-spline motions. J. Mech Des. 118, 193-201.Google ScholarGoogle ScholarCross RefCross Ref
  19. KIM, M.-J., KIM, M.-S., AND SHIN, S. Y. 1995. A general construction scheme for unit quaternion curves with simple high order derivatives. In Comput. Graph. SIGGRAPH'95 Conference Proceedings, 369-376. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. KIM, M.-S. AND NAM, K.-W. 1995. Interpolating solid orientations with circular blending quaternion curves. Comput. Aided Des. 27, 385-398.Google ScholarGoogle ScholarCross RefCross Ref
  21. KIM, M.-S. AND NAM, K.-W. 1996. Hermite interpolation of solid orientations with circular blending quaternion curves. J. Visual. Comput. Anim. 7, 95-110.Google ScholarGoogle ScholarCross RefCross Ref
  22. MILNOR, J. W. 1965. Topology from the Differentiable Viewpoint. University Press of Virginia, Charlottesville, Va. (Based on notes by D.W. Weaver.)Google ScholarGoogle Scholar
  23. NOAKES, L., HEINZINGER,G.,AND PADEN, B. 1989. Cubic splines on curved surfaces. IMA J. Math. Control In. 6, 465-473.Google ScholarGoogle ScholarCross RefCross Ref
  24. PARK,F.C.AND RAVANI, B. 1997. Smooth invariant interpolation of rotations. ACM Trans. Graph. 16, 227-295. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. PARKER,R.L.AND DENHAM, C. F. 1979. Interpolation of unit vectors. Geophys. J. Roy. Astronom. Soc. 58, 685-687.Google ScholarGoogle ScholarCross RefCross Ref
  26. POLAK, E. 1997. Optimization: Algorithms and Consistent Approximations. In Applied Mathematical Sciences No. 124. Springer-Verlag, New York. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. RAMAMOORTHI,R.AND BARR, A. H. 1997. Fast constuction of quaternion splines. In Computer Graphics: SIGGRAPH'97 Conference Proceedings, 287-292. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. RAMAMOORTHI, R., BALL,C.,AND BARR, A. H. 1997. Dynamic splines with constraints for animation. Tech. Rep. CS-TR-97-03, Dept. of Computer Science, CalTech, Pasalena Calif. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. ROBERTS,K.S.,BISHOP,G.,AND GANAPATHY, S. K. 1988. Smooth interpolation of rotational matrices. In Proceedings CVPR'88: Computer Vision and Pattern Recognition, IEEE Computer Science Press, Los Alamitos, Calif., 724-729.Google ScholarGoogle Scholar
  30. SHOEMAKE, K. 1985. Animating rotation with quaternion curves. In Proceedings of SIGGRAPH'85. ACM, New York, pp. 245-254. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. SHOEMAKE, K. 1987. Quaternion calculus and fast animation. In SIGGRAPH'87 Course Notes on State of the Art Image Synthesis. ACM, New York, pp. 101-121.Google ScholarGoogle Scholar
  32. SPIVAK, M. 1965. Calculus on Manifolds. Benjamin/Cummings Publishing, Menlo Park, Calif.Google ScholarGoogle Scholar
  33. THOMPSON,R.AND CLARK, R. M. 1982. A robust least-squares Gondwanan apparent polar wander path and the question of paleomagnetic assessment of Gondwanan reconstructions. Earth Planetary Sci. Lett. 57, 152-158.Google ScholarGoogle Scholar
  34. WAGNER, G. 1990. On means of distances on the surface of a sphere (lower bounds). Pacific J. Math. 144, 389-398.Google ScholarGoogle ScholarCross RefCross Ref
  35. WAGNER, G. 1992. On means of distances on the surface of a sphere. II (lower bounds). Pacific J. Mathematics, 154, 381-396.Google ScholarGoogle ScholarCross RefCross Ref
  36. WANG,W.AND JOE, B. 1993. Orientation interpolation in quaternion space using spherical biarcs. In Proceedings of Graphics Interface'93. Morgan-Kaufmann, San Francisco Calif. pp. 24-32.Google ScholarGoogle Scholar
  37. WATSON, G. S. 1983. Statistics on Spheres. Wiley, New York.Google ScholarGoogle Scholar
  38. WATT,A.AND WATT, M. 1992. Advanced Animation and Rendering Techniques. Addison-Wesley, Reading, Mass. Google ScholarGoogle Scholar
  39. WOLF, R. 1994. On the average distance property of spheres in Banach spaces. Archives Math. 62, 338-344.Google ScholarGoogle ScholarCross RefCross Ref
  40. ZEFRAN,M.AND KUMAR, V. 1996. Planning of smooth motions on SE(3). In Proceedings of the IEEE International Conference on Robotics and Animation. IEEE Computer Society Press, Los Alamitos, Calif., pp. 121-126.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Spherical averages and applications to spherical splines and interpolation

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader