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[bookmark: abstract]Skip Abstract SectionAbstract

Abstract data type declarations appear in typed programming languages like Ada, Alphard, CLU and ML. This form of declaration binds a list of identifiers to a type with associated operations, a composite “value” we call a data algebra. We use a second-order typed lambda calculus SOL to show how data algebras may be given types, passed as parameters, and returned as results of function calls. In the process, we discuss the semantics of abstract data type declarations and review a connection between typed programming languages and constructive logic.
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		Reviewer:  David A. Watt
	

	
         The title of this paper suggests a hot new discovery being rushed out of the laboratory and announced to the world. The reality is less exciting and says much about publication delays. The paper was first presented at a symposium in January 1985; it was submitted to TOPLAS in June 1986 and revised in March 1988. The delay should have provided an opportunity to polish the paper, but a number of careless errors have persisted, and the ML examples use syntax that is years out of date.  
 The main theme of this paper is that existential types (which derive from constructive type theory) can be used to ascribe types to implementations of abstract types. For example, the omnipresent t-stack abstract type has the signature  
 :.OC :.HB 
 
   abstype tstack 
  
    with 
   
   
 empty: t-stack,  
 push: t   ?  9Tt-stack :2WZ t-stack,  
 pop: t-stack :2WZ t   ?  9Tt-stack  
 :.HT :.OE and each of its implementations would have the existential type  
 :.OC :.HB   ?  9Ts. s   ?  9T(t   ?  9Ts :2WZ t)-   ?  9T(s :2WZ t   ?  ).:.HT :.OE (the authors use `   ?   for Cartesian product). Similarly, the t-queue abstract type might have the signature  
 :.OC :.HB 
 
   abstype t-queue 
  
    with 
   
   
 empty: t-queue  
 insert: t   ?  9Tt-queue:2WZ t-queue  
 remove: t-queue :2WZ t   ?  t-queue,  
 :.HT :.OE and the corresponding existential type would be  
 :.OC :.HB   ?  Qq. q   ?  Q(t   ?  9Tq :2WZ q)-   ?  q :2WZ t   ?  9Tq).:.HT :.OE The above two existential types are equivalent; they are independent of the operations' names and of their intended semantics.  
 Since abstract type implementations have types, they are first-class values and can be passed as parameters and returned as function results. The authors exploit these capabilities by presenting a tree-search function with a formal parameter of the above existential type. When the function is called with a stack implementation as an actual parameter, it performs a depth-first search. When called with a queue implementation, the function performs a breadth-first search (actually, right to left). This may not be useful in practice; the tree-search function is hard to understand. Another of the authors' examples is what must be the most opaque programming of the sieve algorithm ever published.  
 This paper invites comparison with Cardelli and Wegner's 1985 survey paper on type theory [1]. The latter paper was more timely, more accurate, and more readable, yet it is not even referenced in this paper. 
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