

skip to main content

 [image: ACM Digital Library home]

 [image: ACM corporate logo]

 	

 Advanced Search

	

 Browse

	

 About

	

 	

 Sign in

	

 Register

	

	Advanced Search
	Journals
	Magazines
	Proceedings
	Books
	SIGs
	Conferences
	People
	

	More

	

 Search ACM Digital Library

SearchSearch

 Advanced Search

 ACM Transactions on Programming Languages and Systems
	Journal Home
	Just Accepted
	Latest Issue
	
	Archive
	Authors
	Author Guidelines
	Submission Site
	ACM Author Policies

	Editors
	Editorial Board
	Editor Guidelines
	Associate Editors Welcome Video

	Reviewers
	Open Access
	TOPLAS Open Access
	ACM Open Access

	About
	About TOPLAS
	Announcements
	Abstracting/Indexing
	TOPLAS Author List
	TOPLAS Affiliations
	ACM Award Winners

	Contact Us
	More

 	Home
	ACM Journals
	ACM Transactions on Programming Languages and Systems
	Vol. 10, No. 3
	Abstract types have existential type

article Open Access

Share on	
	
	
	
	

Abstract types have existential type

 	Authors:
	 [image: Author Picture]John C. Mitchell
 Stanford Univ., Stanford, CA

 Stanford Univ., Stanford, CA
View Profile

,
	 [image: Author Picture]Gordon D. Plotkin
 Univ. of Edinburgh, Edinburgh, Scotland, UK

 Univ. of Edinburgh, Edinburgh, Scotland, UK
View Profile

Authors Info & Claims

 ACM Transactions on Programming Languages and SystemsVolume 10Issue 3pp 470–502https://doi.org/10.1145/44501.45065

Published:01 July 1988Publication History[image: Check for updates on crossmark]

	326citation
	2,009
	Downloads

Metrics
Total Citations326
Total Downloads2,009
Last 12 Months189
Last 6 weeks17

	Get Citation Alerts[bookmark: id-hatemile-navigation-6073290063892647-7]New Citation Alert added!

This alert has been successfully added and will be sent to:
You will be notified whenever a record that you have chosen has been cited.

To manage your alert preferences, click on the button below.
Manage my Alerts

[bookmark: id-hatemile-navigation-6073290063892647-9]New Citation Alert!

Please log in to your account

	
	
	Publisher Site

	
	eReader
	PDF

ACM Transactions on Programming Languages and Systems
Volume 10, Issue 3

 PreviousArticleNextArticle

[image: ACM Digital Library]

[bookmark: abstract]Skip Abstract SectionAbstract

Abstract data type declarations appear in typed programming languages like Ada, Alphard, CLU and ML. This form of declaration binds a list of identifiers to a type with associated operations, a composite “value” we call a data algebra. We use a second-order typed lambda calculus SOL to show how data algebras may be given types, passed as parameters, and returned as results of function calls. In the process, we discuss the semantics of abstract data type declarations and review a connection between typed programming languages and constructive logic.

 References

	1 ARBIB, M. A., AND MANES, E.G. Arrows, Structures, and Functors: The Categorical Imperative. Academic Press, Orlando, Fla., 1975.Google Scholar[image: Google Scholar]
	2 BARENDREGT, H. P. The Lambda Calculus: Its Syntax and Semantics. North-Holland, Amsterdam, The Netherlands, 1984 (revised edition).Google Scholar[image: Google Scholar]
	3 BRUCE, K. B., AND MEYER, A. A completeness theorem for second-order polymorphic lambda calculus. In Proceedings of the International Symposium on Semantics of Data Types. Lecture Notes in Computer Science 173, Springer-Verlag, New York, 1984, pp. 131-144. Google Scholar[image: Google Scholar]
	4 BRUCE, K. B., MEYER, A. R., AND MITCHELL, J. C. The semantics of second-order lambda calculus. In Information and Computation (to be published), Google Scholar[image: Google Scholar]
	5 BURSTALL, R. M., AND GOGUEN, J. Putting theories together to make specifications. In Fifth International Joint Conference on Artificial Intelligence, 1977, pp. 1045-1958.Google Scholar[image: Google Scholar]
	6 BURSTALL, a. M., AND GOGUEN, J. An informal introduction to specification using CLEAR. In The Correctness Problem in Computer Science, Boyer and Moore, Eds. Academic Press, Orlando, Fla., 1981, pp. 185-213.Google Scholar[image: Google Scholar]
	7 BURSTALL, R., AND LAMPSON, B. A kernel language for abstract data types and modules. In Proceedings of International Symposium on Semantics of Data Types. Lecture Notes in Computer Science 173, Springer-Verlag, New York, 1984, pp. 1-50. Google Scholar[image: Google Scholar]
	8 CONSTABLE, R.L. Programs and types. In 21st IEEE Symposium on Foundations of Computer Science (Syracuse, N.Y., Oct. 1980). IEEE, New York, 1980, pp. 118-128.Google Scholar[image: Google Scholar]
	9 CONSTABLE, R. L., ET AL. Implementing Mathematics With The Nuprl Proof Development System. Graduate Texts in Mathematics, vol. 37, Prentice-Hall, Englewood Cliffs, N.J., 1986. Google Scholar[image: Google Scholar]
	10 COQUAND, T. An analysis of Girard's paradox. In Proceedings of the IEEE Symposium on Logic in Computer Science (June 1986). IEEE, New York, 1986, pp. 227-236.Google Scholar[image: Google Scholar]
	11 COQUAND, T., AND HUET, G. The calculus of constructions. Inf. Comput. 76, 2/3 (Feb./Mar. 1988), 95-120. Google Scholar[image: Google Scholar]
	12 CURRY, H. B., AND FEYS, R. Combinatory Logic L North-Holland, Amsterdam, 1958.Google Scholar[image: Google Scholar]
	13 DEBRUIJN, N. G. A survey of the project Automath. In To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism. Academic Press, Orlando, Fla., 1980, pp. 579-607.Google Scholar[image: Google Scholar]
	14 DEMERS, A. J., AND DONAHUE, J.E. Data types, parameters and type checking. In 7th ACM Symposium on Principles of Programming Languages (Las Vegas, Nev., Jan. 28-30, 1980). ACM, New York, 1980, pp. 12-23. Google Scholar[image: Google Scholar]
	15 DEMERS, A. J., AND DONAHUE, J.E. 'Type-completeness' as a language principle. In 7th ACM Symposium on Principles of Programming Languages (Las Vegas, Nev., Jan. 28-30, 1980). ACM, New York, 1980, pp. 234-244. Google Scholar[image: Google Scholar]
	16 DEMERS, A. J., DONAHUE, J. E., AND SKINNER, G. Data types as values: polymorphism, typechecking, encapsulation. In 5th ACM Symposium on Principles of Programming Languages (Tucson, Ariz., Jan. 23-25, 1978). ACM, New York, 1978, pp. 23-30. Google Scholar[image: Google Scholar]
	17 U.S. DEPARTMENT OF DEFENSE Reference Manual for the Ada Programming Language. GPO 008-000-00354-8, 1980.Google Scholar[image: Google Scholar]
	18 DONAHUE, J. On the semantics of data type. SIAM J. Comput. 8 (1979), 546-560.Google Scholar[image: Google Scholar]
	19 FITTING, M. C. Intuitionistic Logic, Model Theory and Forcing. North-Holland, Amsterdam, 1969.Google Scholar[image: Google Scholar]
	20 FORTUNE, S., LEIVANT, D., AND O'DONNELL, M. The expressiveness of simple and second order type structures. J. ACM 30, I (1983), 151-185. Google Scholar[image: Google Scholar]
	21 GIRARD, J.-Y. Une extension de l'interpretation de GSdel ~ l'analyse, et son application l'~limination des coupures dans l'analyse et la th~orie des types. In 2nd Scandinavian Logic Symposium, J. E. Fenstad, Ed. North-Holland, Amsterdam, 1971, pp. 63-92.Google Scholar[image: Google Scholar]
	22 GIRARD, J.~Y. Interpretation fonctionelle et elimination des coupures de l'arithmetique d'ordre superieur. These D'Etat, Univ. Paris VII, Paris, 1972.Google Scholar[image: Google Scholar]
	23 GORDON, M. J., MILNER, R., AND WADSWORTH, C.P. Edinburgh Lecture Notes in Computer Science 78, Springer-Verlag, New York, 1979.Google Scholar[image: Google Scholar]
	24 GRi4TZER G. Universal Algebra. Van Nostrand, New York, 1968.Google Scholar[image: Google Scholar]
	25 GUTTAG, J. V., HOROWlTZ, E., AND MUSSER, D.R. Abstract data types and software validation. Commun. ACM 21, 12 (Dec. 1978), 1048-1064. Google Scholar[image: Google Scholar]
	26 HAYNES, C.T. A theory of data type representation independence. In Proceedings of International Symposium on Semantics of Data Types. Lecture Notes in Computer Science 173, Springer- Verlag, New York, 1984, pp. 157-176. Google Scholar[image: Google Scholar]
	27 HERRL1CH, H., AND STRECKER, G.E. Category Theory. Allyn and Bacon, Newton, Mass., 1973.Google Scholar[image: Google Scholar]
	28 HOOK, J.G. Understanding Russell--A first attempt. In Proceedings of International Symposium on Semantics of Data Types. Lecture Notes in Computer Science 173, Springer-Verlag, New York, 1984, pp. 69-85. Google Scholar[image: Google Scholar]
	29 HOOK, J., AND HOWE, D. Impredicative strong existential equivalent to type:type. Tech. Rep. TR 86-760, Cornell Univ., Ithaca, N.Y., 1986. Google Scholar[image: Google Scholar]
	30 HOWARD, W. The formulas-as-types notion of construction. In To H. B. Curry: Essays on Combinatory Logic, Lambda-Calculus and Formalism. Academic Press, Orlando, Fla., 1980, pp. 479-490.Google Scholar[image: Google Scholar]
	31 HOWE, D.J. The computational behavior of Girard's paradox. In IEEE Symposium on Logic in Computer Science (June 1987). IEEE, New York, 1987, pp. 205-214.Google Scholar[image: Google Scholar]
	32 KAPUR, D. Towards a theory for abstract data types. Tech. Rep. MIT/LCS/TM-237, MIT, Cambridge, Mass., 1980. Google Scholar[image: Google Scholar]
	33 KLEENE, S.C. Realizability: A retrospective survey. In Cambridge Summer School in Mathematical Logic. Lecture Notes in Mathematics 337, Springer-Verlag, New York, 1971, pp. 95-112.Google Scholar[image: Google Scholar]
	34 KRIPKE, S.A. Semantical analysis of intuitionistic logic I. In Formal Systems and Recursive Functions. Proceedings of the 8th Logic Colloquium (Oxford, 1963). North-Holland, Amsterdam, 1965, pp. 92-130.Google Scholar[image: Google Scholar]
	35 LAMBEK, J. From lambda calculus to Cartesian closed categories. In To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism. Academic Press, Orlando, Fla., 1980, pp. 375-402.Google Scholar[image: Google Scholar]
	36 LANDIN, P.J. A correspondence between Algol 60 and Church's Lambda-notation. Commun.{ ACM 8, 2, 3 (Feb.-Mar. 1965), 89-101; 158-165. Google Scholar[image: Google Scholar]
	37 LANDIN, P.J. The next 700 programming languages. Commun. ACM 9, 3 (Mar. 1966), 157-166. Google Scholar[image: Google Scholar]
	38 L)/,UCHL1, H. Intuitionistic propositional calculus and definably non-empty terms. J. Symbolic Logic 30 (1965), 263.Google Scholar[image: Google Scholar]
	39 L~.UCHLI, H. An abstract notion of realizability for which intuitionistic predicate calculus is complete. In Intuitionism and Proof Theory: Proceedings of the Summer Conference at Buffalo N.Y. (1968). North-Holland, Amsterdam, 1970, pp. 227-234.Google Scholar[image: Google Scholar]
	40 LEIVANT, D. Polymorphic type inference. In Proceedings of the lOth ACM Symposium on Principles of Programming Languages (Austin, Tex., Jan. 24-26, 1983). ACM, New York, 1983, pp. 88-98. Google Scholar[image: Google Scholar]
	41 LISKOV, B., SNYDER, A., ATKINSON, R., AND SCHAFFERT, C. Abstraction mechanism in CLU. Commun. ACM 20, 8 (Aug. 1977), 564-576. Google Scholar[image: Google Scholar]
	42 LISKOV, B. ET AL. CLU Reference Manual. Lecture Notes in Computer Science 114, Springer- Verlag, New York, 1981. Google Scholar[image: Google Scholar]
	43 MAC LANE, S. Categories for the Working Mathematician. Graduate Texts in Mathematics 5, Springer-Verlag, New York, 1971.Google Scholar[image: Google Scholar]
	44 MACQUEEN, D.B. Modules for standard ML. In Polymorphism 2, 2 (1985), 35 pages. An earlier version appeared in Proceedings of 1984 ACM Symposium on Lisp and Functional Programming. Google Scholar[image: Google Scholar]
	45 MACQUEEN, D.B. Using dependent types to express modular structure. In Proceedings of the 13th A CM Symposium on Principles of Programming Languages (St. Petersburg Beach, Flu, Jan. 13-15, 1986). ACM, New York, 1986, pp. 277-286. Google Scholar[image: Google Scholar]
	46 MARTIN-LOF, P. Constructive mathematics and computer programming. Paper presented at The 6th International Congress for Logic, Methodology and Philosophy of Science. Preprint, Univ. of Stockholm, Dept. of Mathematics, Stockholm, 1979.Google Scholar[image: Google Scholar]
	47 MCCRACKEN, N. An investigation of a programming language with a polymorphic type structure. Ph.D. dissertation, Syracuse Univ., Syracuse, N.Y., 1979. Google Scholar[image: Google Scholar]
	48 MCCRACKEN, N. The typechecking of programs with implicit type structure. In Proceedings of International Symposium on Semantics of Data Types. Lecture Notes in Computer Science 173, 1984. Springer-Verlag, New York, pp. 301-316. Google Scholar[image: Google Scholar]
	49 MEYER, A. R., AND REINHOLD, M. B. Type is not a type. In Proceedings of the 13th ACM Symposium on Principles of Programming Languages (St. Petersburg Beach, Fla., Jan. 13-15, 1986). ACM, New York, 1986. pp. 287-295. Google Scholar[image: Google Scholar]
	50 MILNER, R. The standard ML core language. Polymorphism 2, 2 (1985), 28 pages. An earlier version appeared in Proceedings of 1984 ACM Symposium on Lisp and Functional Programming.Google Scholar[image: Google Scholar]
	51 MITCHELL, J. C. Semantic models for second-order Lambda calculus. In Proceedings of the 25th IEEE Symposium on Foundations of Computer Science (1984). IEEE, New York, 1984, pp. 289-299.Google Scholar[image: Google Scholar]
	52 MITCHELL, J. C. Representation independence and data abstraction. In Proceedings of the 13th ACM Symposium on Principles of Programming Languages (St. Petersburg Beach, Fla., Jan. 13-15, 1986). ACM, New York, 1986, pp. 263-276. Google Scholar[image: Google Scholar]
	53 MITCHELL, J.C. Polymo~phic type inference and containment. Inf. Comput. 76, 2/3 (Feb./Mar. 1988), 211-249. Google Scholar[image: Google Scholar]
	54 MITCHELL, J. C., AND HARPER, R. The essence of ML. In Proceedings of the 15th ACM Symposium on Principles of Pragramming Languages (San Diego, Calif., Jan. 13-15, 1988). ACM, New York, 1988, pp. 28-46. Google Scholar[image: Google Scholar]
	55 MITCHELL, J. C., AND MEYER, A. R. Second-order logical relations. In Logics of Programs. Lecture Notes in Computer Science 193, Springer-Verlag, New York, 1985, pp. 225-236. Google Scholar[image: Google Scholar]
	56 MITCHELL, J. C., AND PLOTKIN, G.D. Abstract types have existential types. In Proceedings of the 12th ACM Symposium on Principles of Programming Languages (New Orleans, La., Jan. 14-16, 1985). ACM, New York, 1985, pp. 37-51. Google Scholar[image: Google Scholar]
	57 MITCHELL, J. G., MAYBERRY, W., AND SWEET, R. Mesa language manual. Tech. Rep. CSL- 79-3, Xerox PARC, Palo Alto, Calif., 1979.Google Scholar[image: Google Scholar]
	58 MORRIS, J. H. Types are not sets. In 1st ACM Symposium on Principles of Programming Languages (Boston, Mass., Oct. 1-3, 1973). ACM, New York, 1973, pp. 120-124. Google Scholar[image: Google Scholar]
	59 O'DONNELL, M. A practical programming theorem which is independent of Peano arithmetic. In 11th ACM Symposium on the Theory of Computation (Atlanta, Ga., Apr. 30-May 2, 1979). ACM, New York, 1979, pp. 176-188. Google Scholar[image: Google Scholar]
	60 PRAWlTZ, D. Natural Deduction. Almquist and Wiksell, Stockholm, 1965.Google Scholar[image: Google Scholar]
	61 PRAWITZ, D. Ideas and results in proof theory. In 2nd Scandinavian Logic Symposium. North- Holland, Amsterdam, 1971, pp. 235-308.Google Scholar[image: Google Scholar]
	62 REYNOLDS, J.C. Towards a theory of type structure. In Paris Colloquium on Programming. Lecture Notes in Computer Science 19, Springer-Verlag, New York, 1974, pp. 408-425. Google Scholar[image: Google Scholar]
	63 REYNOLDS, J.C. The essence of Algol. In Algorithmic Languages, J. W. de Bakker and J. C. van Vliet, Eds. IFIP, North-Holland, Amsterdam, 1981, pp. 345-372.Google Scholar[image: Google Scholar]
	64 REYNOLDS, J.C. Types, abstraction, and parametric polymorphism. In IFIP Congress (Paris, Sept. 1983).Google Scholar[image: Google Scholar]
	65 REYNOLDS, J.C. Polymorphism is not set-theoretic. In Proceedings of International Symposium on Semantics of Data Types. Lecture Notes in Computer Science 173, Springer-Verlag, New York, 1984, pp. 145-156.Google Scholar[image: Google Scholar]
	66 SHAW, M. (Ed.) ALPHARD: Form and Content. Springer-Verlag, New York, 1981.Google Scholar[image: Google Scholar]
	67 STATMAN, R. Intuitionistic propositional logic is polynomial-space complete. Theor. Comput. Sci. 9 (1979), 67-72.Google Scholar[image: Google Scholar]
	68 STATMAN, R. Number theoretic functions computable by polymorphic programs. In 22nd IEEE Symposium on Foundations of Computer Science. IEEE, New York, 1981, pp. 279-282.Google Scholar[image: Google Scholar]
	69 STENLUND, S. Combinators,),-terms and Proof Theory. Reidel, Dordrecht, Holland, 1972.Google Scholar[image: Google Scholar]
	70 TROELSTRA, A.S. Mathematical Investigation of Intuitionistic Arithmetic and Analysis. Lecture Notes in Mathematics 344, Springer-Verlag, New York, 1973.Google Scholar[image: Google Scholar]
	71 WULF, W. W., LONDON, R., AND SHAW, M. An introduction to the construction and verification of Alphard programs. IEEE Trans. Softw. Eng. SE-2 (1976), 253-264.Google Scholar[image: Google Scholar]

 Cited By
View all

 [image:]

 Index Terms

	Abstract types have existential type
	Software and its engineering

	Software notations and tools

	Formal language definitions

	Semantics

	Theory of computation

	Semantics and reasoning

	Program semantics

 Recommendations

 	Type checking and inference for polymorphic and existential types
CATS '09: Proceedings of the Fifteenth Australasian Symposium on Computing: The Australasian Theory - Volume 94

		This paper proves undecidability of type checking and type inference problems in some variants of typed lambda calculi with polymorphic and existential types. First, type inference in the domain-free polymorphic lambda calculus is proved to be ...

Read More

	Polymorphic type inference and abstract data types
Read More

	Polymorphic type inference and abstract data types

		Many statically typed programming languages provide an abstract data type construct, such as the module in Modula-2. However, in most of these languages, implementations of abstract data types are not first-class values. Thus, they cannot be assigned to ...

Read More

 Reviews

		Reviewer: David A. Watt
	

	
 The title of this paper suggests a hot new discovery being rushed out of the laboratory and announced to the world. The reality is less exciting and says much about publication delays. The paper was first presented at a symposium in January 1985; it was submitted to TOPLAS in June 1986 and revised in March 1988. The delay should have provided an opportunity to polish the paper, but a number of careless errors have persisted, and the ML examples use syntax that is years out of date.
 The main theme of this paper is that existential types (which derive from constructive type theory) can be used to ascribe types to implementations of abstract types. For example, the omnipresent t-stack abstract type has the signature
 :.OC :.HB

 abstype tstack

 with

 empty: t-stack,
 push: t ? 9Tt-stack :2WZ t-stack,
 pop: t-stack :2WZ t ? 9Tt-stack
 :.HT :.OE and each of its implementations would have the existential type
 :.OC :.HB ? 9Ts. s ? 9T(t ? 9Ts :2WZ t)- ? 9T(s :2WZ t ?).:.HT :.OE (the authors use ` ? for Cartesian product). Similarly, the t-queue abstract type might have the signature
 :.OC :.HB

 abstype t-queue

 with

 empty: t-queue
 insert: t ? 9Tt-queue:2WZ t-queue
 remove: t-queue :2WZ t ? t-queue,
 :.HT :.OE and the corresponding existential type would be
 :.OC :.HB ? Qq. q ? Q(t ? 9Tq :2WZ q)- ? q :2WZ t ? 9Tq).:.HT :.OE The above two existential types are equivalent; they are independent of the operations' names and of their intended semantics.
 Since abstract type implementations have types, they are first-class values and can be passed as parameters and returned as function results. The authors exploit these capabilities by presenting a tree-search function with a formal parameter of the above existential type. When the function is called with a stack implementation as an actual parameter, it performs a depth-first search. When called with a queue implementation, the function performs a breadth-first search (actually, right to left). This may not be useful in practice; the tree-search function is hard to understand. Another of the authors' examples is what must be the most opaque programming of the sieve algorithm ever published.
 This paper invites comparison with Cardelli and Wegner's 1985 survey paper on type theory [1]. The latter paper was more timely, more accurate, and more readable, yet it is not even referenced in this paper.
	

[image: Computing Reviews logo][image: Computing Reviews logo]Access critical reviews of Computing literature here
Become a reviewer for Computing Reviews.

 Comments

Please enable JavaScript to view thecomments powered by Disqus.

 Login options
Check if you have access through your login credentials or your institution to get full access on this article.
Sign in

Full Access
Get this Article

	Information
	Contributors

	Published in

 [image: cover image ACM Transactions on Programming Languages and Systems]
ACM Transactions on Programming Languages and Systems Volume 10, Issue 3
July 1988
158 pages
ISSN:0164-0925
EISSN:1558-4593
DOI:10.1145/44501
Issue’s Table of Contents

Copyright © 1988 ACM

Sponsors

In-Cooperation

Publisher

Association for Computing Machinery
New York, NY, United States

 Publication History

 	Published: 1 July 1988

 Published in toplas Volume 10, Issue 3

 Permissions
Request permissions about this article.
Request Permissions

Check for updates
[image: Check for updates on crossmark]

Qualifiers
	article

Conference

Funding Sources

	

 [image:]

Other Metrics
View Article Metrics

	Bibliometrics
	Citations326

	Article Metrics
	326
Total Citations
View Citations
	2,009
Total Downloads

	Downloads (Last 12 months)189
	Downloads (Last 6 weeks)17

Other Metrics
View Author Metrics

	Cited By
View all

PDF Format
View or Download as a PDF file.
PDF

eReader
View online with eReader.
eReader

Digital Edition
View this article in digital edition.
View Digital Edition

	Figures
	Other

	
	

Share this Publication link
https://dl.acm.org/doi/10.1145/44501.45065
Copy Link

Share on Social Media

Share on	
	
	
	
	

	
	
	
	0References
	
	
	

Close Figure Viewer

Browse AllReturnChange zoom level

Caption

 View Issue’s Table of Contents

 Export Citations

Select Citation formatBibTeX
EndNote
ACM Ref

	Please download or close your previous search result export first before starting a new bulk export.
Preview is not available.
By clicking download,a status dialog will open to start the export process. The process may takea few minutes but once it finishes a file will be downloadable from your browser. You may continue to browse the DL while the export process is in progress.
Download

	

	Download citation
	Copy citation

 Footer

 Categories

	Journals
	Magazines
	Books
	Proceedings
	SIGs
	Conferences
	Collections
	People

 About

	About ACM Digital Library
	ACM Digital Library Board
	Subscription Information
	Author Guidelines
	Using ACM Digital Library
	All Holdings within the ACM Digital Library
	ACM Computing Classification System
	Digital Library Accessibility

 Join

	Join ACM
	Join SIGs
	Subscribe to Publications
	Institutions and Libraries

 Connect

	Contact
	Facebook
	Twitter
	Linkedin
	Feedback
	Bug Report

 The ACM Digital Library is published by the Association for Computing Machinery. Copyright © 2024 ACM, Inc.

	Terms of Usage
	Privacy Policy
	Code of Ethics

 [image: ACM Digital Library home]

 [image: ACM home]

 Your Search Results Download Request
We are preparing your search results for download ...
We will inform you here when the file is ready.
Download now!

Your Search Results Download Request

Your file of search results citations is now ready.
Download now!

Your Search Results Download Request
Your search export query has expired. Please try again.

	

