skip to main content
10.1145/383259.383306acmconferencesArticle/Chapter ViewAbstractPublication PagessiggraphConference Proceedingsconference-collections
Article

A physically-based night sky model

Published:01 August 2001Publication History

ABSTRACT

This paper presents a physically-based model of the night sky for realistic image synthesis. We model both the direct appearance of the night sky and the illumination coming from the Moon, the stars, the zodiacal light, and the atmosphere. To accurately predict the appearance of night scenes we use physically-based astronomical data, both for position and radiometry. The Moon is simulated as a geometric model illuminated by the Sun, using recently measured elevation and albedo maps, as well as a specialized BRDF. For visible stars, we include the position, magnitude, and temperature of the star, while for the Milky Way and other nebulae we use a processed photograph. Zodiacal light due to scattering in the dust covering the solar system, galactic light, and airglow due to light emission of the atmosphere are simulated from measured data. We couple these components with an accurate simulation of the atmosphere. To demonstrate our model, we show a variety of night scenes rendered with a Monte Carlo ray tracer.

References

  1. 1.BARANOSKI, G., ROKNE, J., SHIRLEY, P., TRONDSEN, T., AND BASTOS, R. Simulating the aurora borealis. In Proc. of Pacific Graphics (2000). Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. 2.BLACKWELL, D. E. The zodiacal light. Scientific American 54 (July 1960).Google ScholarGoogle Scholar
  3. 3.BLINN, J. The jupiter and saturn fly-by animations, 1980.Google ScholarGoogle Scholar
  4. 4.BLINN, J. F. Light reflection functions for simulation of clouds and dusty surfaces. Proc. of SIGGRAPH (1982). Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. 5.DERMOTT, S. F., AND LIOU, J. C. Detection of asteroidal dust particles from known families in near-earth orbits. In AIP Conference Proceedings (July 1994), vol. 301(1), pp. 13-21.Google ScholarGoogle ScholarCross RefCross Ref
  6. 6.DOBASHI, Y., NISHITA, T., KANEDA, K., AND YAMASHITA, H. A fast display method of sky colour using basis functions. J. of Visualization and Computer Animation 8, 3 (Apr. - June 1997), 115-127.Google ScholarGoogle Scholar
  7. 7.DUFFETT-SMITH, P. Astronomy with your personal computer, 2nd ed. Cambridge University Press, 1990. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. 8.DURAND, F., AND DORSEY, J. Interactive tone mapping. Eurographics Workshop on Rendering (2000). Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. 9.EBERT, D., MUSGRAVE, K., PEACHEY, D., PERLIN, K., AND WORLEY, S. Texturing and Modeling: A procedural Approach. Academic Press, 1994. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. 10.GREEN, R., Ed. Spherical Astronomy. Cambridge Univ. Pr., 1985.Google ScholarGoogle Scholar
  11. 11.HAPKE, B. Optical properties of the lunar surface. In Physics and astronomy of the Moon, Kopal, Ed. Academic Press, 1971.Google ScholarGoogle Scholar
  12. 12.HAPKE, B. W. A theoretical photometric function of the lunar surface. Journal of Geophysical Research 68, 15 (1963), 4571-4586.Google ScholarGoogle ScholarCross RefCross Ref
  13. 13.HENYEY, L. G., AND GREENSTEIN, J. L. Diffuse radiation in the galaxy. Astrophysics Journal 93 (1941), 70-83.Google ScholarGoogle ScholarCross RefCross Ref
  14. 14.HOFFLEIT, D., AND WARREN, W. The Bright Star Catalogue, 5th ed. Yale University Observatory, 1991.Google ScholarGoogle Scholar
  15. 15.HUNT. Light and dark adaptation and the perception of color. Journal of the Optical Society of Am. A 42, 3 (1952), 190.Google ScholarGoogle Scholar
  16. 16.J. VAN DIGGELEN. Photometric properties of lunar carter floors. Rech. Obs. Utrecht 14 (1959), 1-114.Google ScholarGoogle Scholar
  17. 17.JENSEN, H. W., PREMOZE, S., SHIRLEY, P., THOMPSON, W., FERWERDA, J., AND STARK, M. Night rendering. Tech. Rep. UUCS-00-016, Computer Science Dept., University of Utah, Aug. 2000.Google ScholarGoogle Scholar
  18. 18.JOHNSON, H. L., AND MORGAN, W. W. Fundamental stellar photometry for standards of spectral type on the revised system of the yerkes spectral atlas. Astrophysics Journal 117, 313 (1953).Google ScholarGoogle ScholarCross RefCross Ref
  19. 19.KLASSEN, R. Modeling the effect of the atmosphere on light. ACM Trans. on Graphics 6, 3 (1987), 215-237. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. 20.KOPAL, Z. The Moon. D. Reidel Publishing Company, Dordrecht, Holland, 1969.Google ScholarGoogle Scholar
  21. 21.LANG, K. Astrophysical formulae. Astronomy and astrophysics library (1999).Google ScholarGoogle Scholar
  22. 22.LARSON, G. W., RUSHMEIER, H., AND PIATKO, C. A visibility matching tone reproduction operator for high dynamic range scenes. IEEE Trans. on Visualization and Computer Graphics 3, 4 (Oc. - Dec. 1997), 291-306. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. 23.MEEUS, J. Astronomical Formulae for Calculators, 4th ed. Willman-Bell, Inc., 1988. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. 24.MEEUS, J. Astronomical Algorithms, 2nd ed. Willmann-Bell, Inc., Richmond, VA, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. 25.MELLINGER, A. A 360 o x 180 o all-sky panorama. http://canopus.physik.unipotsdam. de/~axm/images.html, 2000.Google ScholarGoogle Scholar
  26. 26.MINNAERT, M. Light and Color in the Outdoors. Springer-Verlag, 1974.Google ScholarGoogle Scholar
  27. 27.NAVAL RESEARCH LABORATORY. Clementine deep space program science experiment. http://www.nrl.navy.mil/clementine/.Google ScholarGoogle Scholar
  28. 28.NAVARRO, R., AND LOSADA, M. A. Shape of stars and optical quality of the human eye. Journal of the Optical Society of America (A) 14, 2 (1997), 353-359.Google ScholarGoogle ScholarCross RefCross Ref
  29. 29.NISHITA, T., DOBASHI, Y., KANEDA, K., AND YAMASHITA, H. Display method of the sky color taking into account multiple scattering. In Proc. of Pacific Graphics (1996).Google ScholarGoogle Scholar
  30. 30.NISHITA, T., AND NAKAMAE, E. Continuous tone representation of threedimensional objects illuminated by sky light. In Computer Graphics (SIG- GRAPH '86 Proceedings) (1986), vol. 20(4). Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. 31.NISHITA, T., SIRAI, T., TADAMURA, K., AND NAKAMAE, E. Display of the earth taking into account atmospheric scattering. In Computer Graphics (SIG- GRAPH '93 Proceedings) (1993), vol. 27. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. 32.OBERSCHELP, W., AND HORNUG, A. Visualization of eclipses and planetary conjunction events. the interplay between model coherence, scaling and animation. In Proc. of Computer Graphics International (2000). Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. 33.OLSON, T. The colors of the stars. In IST/SID 6th Color Imaging Conf. (1998).Google ScholarGoogle Scholar
  34. 34.PREETHAM, A. J., SHIRLEY, P., AND SMITS, B. A practical analytic model for daylight. In Proc. of SIGGRAPH (1999). Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. 35.PREMOZE, S., THOMPSON, W., AND SHIRLEY, P. Geospecific rendering of alpine terrain. In Eurographics Workshop on Rendering (1999). Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. 36.REACH, W. T., FRANZ, B. A., KELSALL, T., AND WEILAND, J. L. Dirbe observations of the zodiacal light. In AIP Conference Proceedings (January 1996), vol. 348, pp. 37-46.Google ScholarGoogle ScholarCross RefCross Ref
  37. 37.RICHTER, N. B. The photometric properties of interplanetary matter. Quarterly Journal of the Royal Astronomical Society 3 (1962), 179-186.Google ScholarGoogle Scholar
  38. 38.ROACH, F., AND GORDON, J. The Light of the Night Sky. Geophysics and Astrophysics Monographs, V. 4. D Reidel Pub Co, 1973.Google ScholarGoogle Scholar
  39. 39.SIEGEL, R., AND HOWELL, J. R. Thermal Radiation Heat Transfer, 3rd ed. Hemisphere Publishing Corporation, 1992.Google ScholarGoogle Scholar
  40. 40.SMITH, R. C. Observational Astrophysics. Cambridge University Press, 1995.Google ScholarGoogle Scholar
  41. 41.SPENCER, S., SHIRLEY, P., ZIMMERMAN, K., AND GREENBERG, D. Physically-based glare effects for digital images. In Computer Graphics (Proc. Siggraph) (1995). Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. 42.TADAMURA, K., NAKAMAE, E., KANEDA, K., BABA, M., YAMASHITA, H., AND NISHITA, T. Modeling of skylight and rendering of outdoor scenes. In Eurographics '93 (1993), Blackwell Publishers.Google ScholarGoogle Scholar
  43. 43.UPSTILL, S. The Realistic Presentation of Synthetic Images: Image Processing in Computer Graphics. PhD thesis, Berkeley, 1985. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. 44.U.S. NAVAL OBSERVATORY, R. G. O. The Astronomical Almanac for the Year 2001. U.S. Government Printing Office, 2001.Google ScholarGoogle Scholar
  45. 45.VAN DE HULST, H. Light Scattering by Small Particles. Wiley & Sons, 1957.Google ScholarGoogle Scholar
  46. 46.VAN DE HULST, H. Multiple Light Scattering. Academic Press, 1980.Google ScholarGoogle Scholar
  47. 47.YAEGER, L., UPSON, C., AND MYERS, R. Combining physical and visual simulation - creation of the planet jupiter for the film "2010". Proc. of SIGGRAPH) (1986). Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. A physically-based night sky model

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in
          • Published in

            cover image ACM Conferences
            SIGGRAPH '01: Proceedings of the 28th annual conference on Computer graphics and interactive techniques
            August 2001
            600 pages
            ISBN:158113374X
            DOI:10.1145/383259

            Copyright © 2001 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 1 August 2001

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • Article

            Acceptance Rates

            SIGGRAPH '01 Paper Acceptance Rate65of300submissions,22%Overall Acceptance Rate1,822of8,601submissions,21%

            Upcoming Conference

            SIGGRAPH '24

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader