skip to main content
10.1145/383259.383282acmconferencesArticle/Chapter ViewAbstractPublication PagessiggraphConference Proceedingsconference-collections
Article

Topology matching for fully automatic similarity estimation of 3D shapes

Published:01 August 2001Publication History

ABSTRACT

There is a growing need to be able to accurately and efficiently search visual data sets, and in particular, 3D shape data sets. This paper proposes a novel technique, called Topology Matching, in which similarity between polyhedral models is quickly, accurately, and automatically calculated by comparing Multiresolutional Reeb Graphs (MRGs). The MRG thus operates well as a search key for 3D shape data sets. In particular, the MRG represents the skeletal and topological structure of a 3D shape at various levels of resolution. The MRG is constructed using a continuous function on the 3D shape, which may preferably be a function of geodesic distance because this function is invariant to translation and rotation and is also robust against changes in connectivities caused by a mesh simplification or subdivision. The similarity calculation between 3D shapes is processed using a coarse-to-fine strategy while preserving the consistency of the graph structures, which results in establishing a correspondence between the parts of objects. The similarity calculation is fast and efficient because it is not necessary to determine the particular pose of a 3D shape, such as a rotation, in advance. Topology Matching is particularly useful for interactively searching for a 3D object because the results of the search fit human intuition well.

References

  1. 1.M.de Berg and M.van Kreveld. Trekking in the Alps Without Freezing or Getting Tired. Algorithmica, Vol.18, pp.306-323, 1997.Google ScholarGoogle ScholarCross RefCross Ref
  2. 2.P. J. Besl and N. D. McKay. A Method for Registration of 3-D Shapes. IEEE Trans. PAMI, Vol.14, pp.239-256, 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. 3.P. J. Besl. Triangles as a Primary Representation Object Recognition in Computer Vision, LNCS 994, pp.191-206. Splinger-Verlag, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. 4.H. Blum. A Transformation for Extracting New Descriptors of Shape. Proc. Symp. Models for the Perception of Speech and Visual Form, pp.362-380, MIT Press, 1967.Google ScholarGoogle Scholar
  5. 5.T. A. Cass. Robust Affine Structure Matching for 3D Object Recognition IEEE Trans. PAMI, Vol.20, pp.1265-1274, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. 6.J. Chen and Y. Han. Shortest Paths on Polyhedron. Proc. Symp. Theory of Computing, pp.360-369, 1990. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. 7.Y. Chen and G. Medioni. Object Modelling by Registration of Multiple Range Images. Image and Vision Computing, Vol.10, No.3, pp.145-155, 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. 8.J.-H. Chuang, C.-H. Tsai and M.-C. Ko. Skeletonization of Three-Dimensional Object Using Generalized Potential Field. IEEE Trans. PAMI, Vol.22, pp.1241-1251, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. 9.T. Culver, J. Keyser and D. Manocha. Accurate Computation of the Medial Axis of a Polyhedron. Proc. Symp. Solid Modeling, pp.179-190, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. 10.G. Dudek and J.K. Tsotsos. Shape Representation and Recognition from Multiscale Curvature. Computer Vision and Image Understanding, Vol.68, pp.170-189, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. 11.C. Dorai and A.K. Jain. COSMOS-A Representation Scheme for 3D Free-Form Objects. IEEE Trans. PAMI, Vol.19, pp.1115-1130, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. 12.M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B.Dom, M. Gorkani, J. Hafner, D. Lee, D. Petkovic, D. Steele and P. Yanker. The Query By Image and Video Content: The QBIC System. IEEE Computer, Vol.28, No.9, pp.23-32, September 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. 13.I. Fujishiro, Y. Takeshima, T. Azuma and S. Takahashi. Volume Data Mining Using 3D Field Topology Analysis. IEEE Computer Graphics and Applications, Vol.20, No.5, pp.46- 51, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. 14.D.M. Gaines. A Tool-Centric Approach to Designing Composable Feature Recognizers. Proc. Symp. Solid Modeling, pp.97-107, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. 15.Y. Gdalyahu and D. Weinshall. Flexible Syntactic Matching of Curves and Its Application to Automatic Hierarchical Classification of Silhouettes. IEEE Trans. PAMI, Vol.21, pp.1312-1328, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. 16.S.K. Gupta, W.C. Regli and D.S. Nau. Manufacturing Feature Instance: Which Ones to Recognize? Proc. Symp. Solid Modeling pp.141-152, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. 17.A. Gupta and R. Jain. Visual Information Retrieval. Comm. ACM, Vol.40, No.5, pp.69-79, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. 18.M. Hebert, K. Ikeuchi and H. Delingette. A Spherical Representation for Recognition of Free-form Surfaces. IEEE Trans. PAMI, Vol.17, pp.681-690, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. 19.D.P. Hottenlocher, G.A. Klanderman, and W.J. Rucklidge. Comparing Images Using the Hausdorff Distance. IEEE Trans. PAMI, Vol.15, pp.850-863, 1993. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. 20.C.E. Jacobs, A. Finkelsten and D.H. Salesin. Fast Multiresolution Image Querying. Proc. SIGGRAPH'95, pp.277-286. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. 21.T. Kanai and H. Suzuki. Approximate Shortest Path on Polyhedral Surface Based on Selective Refinement of the Discrete Graph and its Applications. IEEE Proc. Geometric Modeling and Processing, pp.241-250, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. 22.S.B. Kang and K. Ikeuchi. The Complex EGI: New Representation for 3-D Pose Determination. IEEE Trans. PAMI, Vol.15, pp.707-721, July 1993. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. 23.M.van Kreveld, R.van Ostrum, C. Bajaj, V. Pascucci and D. Schikore. Contour Trees and Small Seed Sets for Isosurface Traversal. Proc. Symp. Computational Geometry, pp.212-220, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. 24.F. Korn, N. Sidiropoulos, C. Faloutsos, E. Siegel and Z. Protopapas. Fast nearest neighbor search in medical image databases. Proc. Int'l Conf. Very Large Data Bases, pp.215- 226, 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. 25.M. Lanthier, A. Maheshwari and J. Sack. Approximating Weighted Shortest Paths on Polyhedral Surfaces. Proc. Symp. Computational Geometry, pp.274-283, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. 26.F. Lazarus and A. Verroust. Level Set Diagrams of Polyhedral Objects. Proc. Symp. Solid Modeling, pp.130-140, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. 27.C. Lu and J. Dunham. Shape Matching Using Polygon Approximation and Dynamic Alignment. Pattern Recognition Letters, Vol.14, pp.945-949, 1993. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. 28.J.S.B. Mitchell, D.M. Mount and C.H. Papadimitriou. The Discrete Geodeic Problem. SIAM J. Computing, Vol.16, pp.647-667, 1987. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. 29.R. Osada, T. Funkhouser, B. Chazelle and D. Dobkin. Matching 3D Models with Shape Distribution. Proc. Shape Modeling Int'l, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. 30.G. Reeb. Sur les points singuliers d'une forme de Pfaff completement integrable ou d'une fonction numerique {On the Singular Points of a Completely Integrable Pfaff Form or of a Numerical Function}. Comptes Randus Acad. Sciences Paris, Vol.222, pp.847-849, 1946.Google ScholarGoogle Scholar
  31. 31.M. Sharir and A. Schorr. On Shortest Paths in Polyhedral Spaces. SIAM J. Computing, Vol.15, No.1, pp.193-215, February 1986. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. 32.E.C. Sherbrooke, N.M. Patrikalakis and E. Brisson. An Algorithm for the Medial Axis Transform of 3D Polyhedral Solids. IEEE Trans. Visualization and Computer Graphics, Vol.2, No.1, pp.44-61, 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. 33.Y. Shinagawa, T.L. Kunii and Y.L. Kergosien. Surface Coding Based on Morse Theory. IEEE Computer Graphics and Applications, Vol.11, No.5, pp.66-78, September 1991. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. 34.K. Siddiqi, A. Shokoufandeh, S. J. Dickinson, and S. W. Zucker. Shock graphs and shape matching. Int'l J. Computer Vision, pp. 222-229, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. 35.R. Sonthi, G. Kunjur and R. Gadh. Shape Feature Determination using the Curvature Region Representation. Proc. Symp. Solid Modeling, pp.285-296, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. 36.S. Takahashi, Y. Shinagawa and T.L. Kunii. A Featurebased Approach for Smooth Surfaces. Proc. Symp. Solid Modeling, pp.97-110, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. 37.S.P. Tarasov and M.N. Vyalyi. Construction of Contour Trees in 3D in O(n log n) Steps. Proc. Symp. Computational Geometry, pp.68-75, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. 38.J.H. Vandenbrande and A.A.G. Requicha. Spatial Reasoning for the Automatic Recognition of Machinable Features in Solid Models. IEEE Trans. PAMI, Vol.15, pp.1269-1285, 1993. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. 39.W. Wang and S.S. Iyengar. Efficient Data Structures for Model-based 3-D Object Recognition and Localization from Range Images. IEEE Trans. PAMI, Vol.14, pp.1035-1045, 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. 40.I. Weiss and M .Ray. Model-Based Recognition of 3D Object from Single Vision. IEEE Trans. PAMI, Vol.23, pp.116-128, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. 41.Y. Zhou, A. Kaufman and A.W. Toga. Three-dimensional skeleton and centerline generation based on an approximate minimum distance field. The Visual Computer, Vol.14, No.7, pp.303-314, 1998.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Topology matching for fully automatic similarity estimation of 3D shapes

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          SIGGRAPH '01: Proceedings of the 28th annual conference on Computer graphics and interactive techniques
          August 2001
          600 pages
          ISBN:158113374X
          DOI:10.1145/383259

          Copyright © 2001 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 1 August 2001

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • Article

          Acceptance Rates

          SIGGRAPH '01 Paper Acceptance Rate65of300submissions,22%Overall Acceptance Rate1,822of8,601submissions,21%

          Upcoming Conference

          SIGGRAPH '24

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader