skip to main content
article

Proof-complexity results for nonmonotonic reasoning

Authors Info & Claims
Published:01 July 2001Publication History
Skip Abstract Section

Abstract

It is well-known that almost all nonmonotonic formalisms have a higher worst-case complexity than classical reasoning. In some sense, this observation denies one of the original motivations of nonmonotonic systems, which was the expectation taht nonmonotonic rules should help to speed-up the reasoning process, and not make it more difficult. In this paper, we look at this issue from a proof-theoretical perspective. We consider analytic calculi for certain nonmonotonic logis and analyze to what extent the presence of nonmonotonic rules can simplify the search for proofs. In particular, we show that there are classes of first-order formulae which have only extremely long “classical” proofs, i.e., proofs without applications of nonmonotonic rules, but there are short proofs using nonmonotonic inferences. Hence,despite the increase of complexity in the worst case, there are instances where nonmonotonic reasoning can be much simpler than classical (cut-free) reasoning.

References

  1. AMATI, G., AIELLO,L.C.,GABBAY,D.,AND PIRRI, F. 1996. A Proof Theoretical Approach to Default Reasoning I: Tableaux for Default Logic. J. of Logic and Computation 6, 2, 205-231.Google ScholarGoogle Scholar
  2. ANDREWS, P. B. 1971. Resolution in Type Theory. J. Symbolic Logic 36, 414-432.Google ScholarGoogle Scholar
  3. ANDREWS, P. B. 1981. Theorem Proving via General Matings. J. ACM 28, 2, 193-214. Google ScholarGoogle Scholar
  4. APT,K.R.AND BLAIR, H. A. 1990. Arithmetic Classification of Perfect Models of Stratified Programs. Fundamenta Informaticae 13, 1-18. Addendum in 14:339-343, 1991. Google ScholarGoogle Scholar
  5. BAAZ,M.AND LEITSCH, A. 1992. Complexity of Resolution Proofs and Function Introduction. Annals of Pure and Applied Logic 57, 181-215.Google ScholarGoogle Scholar
  6. BAAZ,M.AND LEITSCH, A. 1994. On Skolemization and Proof Complexity. Fundamenta Informaticae 20, 353-379.Google ScholarGoogle Scholar
  7. BEN-ELIYAHU,R.AND DECHTER, R. 1991. Default Logic, Propositional Logic and Constraints. In Proc. 9th National Conf. on Artificial Intelligence (AAAI'91). Morgan Kaufmann, Los Altos, CA, 379-385.Google ScholarGoogle Scholar
  8. BEN-ELIYAHU,R.AND DECHTER, R. 1996. Default Reasoning using Classical Logic. Artificial Intelligence 84, 113-150. Google ScholarGoogle Scholar
  9. BIBEL, W. 1993. Deduction: Automated Logic. Academic Press, London.Google ScholarGoogle Scholar
  10. BOCHMAN, A. 1994. On the Relation Between Default and Modal Consequence Relations. In Proc. 4th International Conf. on Principles of Knowledge Representation and Reasoning (KR'94). Morgan Kaufmann, San Francisco, 63-74.Google ScholarGoogle Scholar
  11. BONATTI, P. A. 1993. A Gentzen System for Non-Theorems. Tech. Rep. CD-TR 93/52, Christian Doppler Labor f ur Expertensysteme, Technische Universit at Wien.Google ScholarGoogle Scholar
  12. BONATTI, P. A. 1996. Sequent Calculi for Default and Autoepistemic Logics. In Proc. International Conf. on Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX'96). Lecture Notes in Artificial Intelligence, vol. 1071. Springer Verlag, Berlin, 127-142. Google ScholarGoogle Scholar
  13. BONATTI,P.A.AND OLIVETTI, N. 1997a. A Sequent Calculus for Circumscription. In Proc. 11th International Workshop on Computer Science Logic (CSL'97). Lecture Notes in Computer Science, vol. 1414. Springer Verlag, Berlin, 98-114. Google ScholarGoogle Scholar
  14. BONATTI,P.A.AND OLIVETTI, N. 1997b. A Sequent Calculus for Skeptical Default Logic. In Proc. International Conf. on Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX'97). Lecture Notes in Artificial Intelligence, vol. 1227. Springer Verlag, Berlin, 107-121. Google ScholarGoogle Scholar
  15. CADOLI, M. 1995. Tractable Reasoning in Artificial Intelligence. Lecture Notes in Artificial Intelligence, vol. 941. Springer Verlag, Berlin. Google ScholarGoogle Scholar
  16. CADOLI,M.AND DONINI, F. M. 1997. A Survey on Knowledge Compilation. AI Communications 10, 137-150. Google ScholarGoogle Scholar
  17. CADOLI, M., DONINI,F.M.,AND SCHAERF, M. 1996. Is Intractability of Non-Monotonic Reasoning a Real Drawback? Artificial Intelligence 88, 215-251. Google ScholarGoogle Scholar
  18. CADOLI, M., DONINI, F. M., SCHAERF, M., AND SILVESTRI, R. 1997. On Compact Representations of Propositional Circumscription. Theoretical Computer Science 182, 183-202. Google ScholarGoogle Scholar
  19. CADOLI,M.AND SCHAERF, M. 1993. A Survey of Complexity Results for Non-Monotonic Logics. J. Logic Programming 17, 127-160.Google ScholarGoogle Scholar
  20. CLARK, K. L. 1978. Negation as Failure. In Logic and Databases. Plenum Press, New York, 293- 322.Google ScholarGoogle Scholar
  21. DIX, J., FURBACH,U.,AND NIEMEL A, I. 2001. Nonmonotonic Reasoning: Towards Efficient Calculi and Implementations. In Handbook of Automated Reasoning. Elsevier Science Press, 1121-1134. Google ScholarGoogle Scholar
  22. DUTKIEWICZ, R. 1989. The Method of Axiomatic Rejection for the Intuitionistic Propositional Logic. Studia Logica 48, 4, 449-460.Google ScholarGoogle Scholar
  23. EGLY, U. 1994. On Methods of Function Introduction and Related Concepts. Ph.D. thesis, TH Darmstadt, Alexanderstr. 10, D-64283 Darmstadt.Google ScholarGoogle Scholar
  24. EGLY, U. 1996. On Different Structure-Preserving Translations to Normal Form. J. Symbolic Computation 22, 121-142. Google ScholarGoogle Scholar
  25. EGLY,U.AND TOMPITS, H. 1997a. Is Non-Monotonic Reasoning Always Harder? In Proc. 4th International Conf. on Logic Programing and Nonmonotonic Reasoning (LPNMR'97). Lecture Notes in Artificial Intelligence, vol. 1265. Springer Verlag, Berlin, 60-75. Google ScholarGoogle Scholar
  26. EGLY,U.AND TOMPITS, H. 1997b. Non-Elementary Speed-Ups in Default Reasoning. In Proc. 1st International Joint Conf. on Qualitative and Quantitative Practical Reasoning (ECSQARU-FAPR'97). Lecture Notes in Artificial Intelligence, vol. 1244. Springer Verlag, Berlin, 237- 251. Google ScholarGoogle Scholar
  27. EGLY,U.AND TOMPITS, H. 1998. On Proof Complexity of Circumscription. In Proc. International Conf. on Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX'98). Lecture Notes in Artificial Intelligence, vol. 1397. Springer Verlag, Berlin, 141-155. Google ScholarGoogle Scholar
  28. EITER,T.AND GOTTLOB, G. 1993. Propositional Circumscription and Extended Closed World Reasoning are 5 P2 -complete. J. Theoretical Computer Science 144, 2, 231-245. Addendum: vol. 118, p. 315, 1993. Google ScholarGoogle Scholar
  29. GABBAY, D. 1985. Theoretical Foundations for Non-Monotonic Reasoning in Expert Systems. In Logics and Models of Concurrent Systems. Springer Verlag, Berlin, 439-457. Google ScholarGoogle Scholar
  30. GENTZEN, G. 1935. Untersuchungen uber das logische Schlieben. Mathematische Zeitschrift 39, 176-210, 405-431.Google ScholarGoogle Scholar
  31. GOGIC, G., PAPADIMITROU, C., SELMAN,B.,AND KAUTZ, H. 1995. The Comparative Linguistics of Knowledge Representation. In Proc. 14th International Joint Conf. on Artificial Intelligence (IJCAI'95). Morgan Kaufmann, San Mateo, 862-869. Google ScholarGoogle Scholar
  32. GORANKO, V. 1994. Refutation Systems in Modal Logic. Studia Logica 53, 2, 299-324.Google ScholarGoogle Scholar
  33. GOTTLOB, G. 1992. Complexity Results for Nonmonotonic Logics. J. Logic and Computation 2, 397-425.Google ScholarGoogle Scholar
  34. KAUTZ,H.A.AND SELMAN, B. 1990. Hard Problems for Simple Default Logics. Artificial Intelligence 49, 243-379. Google ScholarGoogle Scholar
  35. KOLAITIS,P.AND PAPADIMITRIOU, C. 1988. Some Computational Aspects of Circumscription. In Proc. 7th National Conf. on Artificial Intelligence (AAAI'88). MIT Press, Menlo Park, 465-469.Google ScholarGoogle Scholar
  36. KRAUS, S., LEHMANN,D.,AND MAGIDOR, M. 1990. Nonmonotonic Reasoning, Preferential Models and Cumulative Logics. Artificial Intelligence 44, 167-207. Google ScholarGoogle Scholar
  37. KREISEL,G.AND PUTNAM, H. 1957. Eine Unableitbarkeitsbeweismethode fur den Intuitionistischen Aussagenkalk ul. Archiv f ur Mathematische Logik und Grundlagenforschung 3, 74-78.Google ScholarGoogle Scholar
  38. LEHMANN,D.AND MAGIDOR, M. 1992. What does a Conditional Knowledge Base Entail? Artificial Intelligence 55, 1-60. Google ScholarGoogle Scholar
  39. LEITSCH, A. 1997. The Resolution Calculus. Springer Verlag, Berlin. Google ScholarGoogle Scholar
  40. LEVESQUE, H. J. 1990. All I Know: A Study in Autoepistemic Logic. Artificial Intelligence 42, 263-309. Google ScholarGoogle Scholar
  41. LIFSCHITZ, V. 1985. Computing Circumscription. In Proc. 9th International Joint Conf. on Artificial Intelligence (IJCAI'85). Morgan Kaufmann, Los Altos, CA., 121-127.Google ScholarGoogle Scholar
  42. LOVELAND, D. W. 1978. Automated Theorem Proving: A Logical Basis. Fundamental Studies in Computer Science, vol. 6. North-Holland Publishing Company, Amsterdam, New York, Oxford. Google ScholarGoogle Scholar
  43. LUKASIEWICZ, J. 1951. Aristotle's Syllogistic from the Standpoint of Modern Formal Logic. Clarendon Press, Oxford.Google ScholarGoogle Scholar
  44. LUKASZEWICZ, W. 1990. Non-Monotonic Reasoning: Formalization of Commonsense Reasoning. Ellis Horwood, New York.Google ScholarGoogle Scholar
  45. MAKINSON, D. 1989. General Theory of Cumulative Inference. In Proc. 2nd International Workshop on Non-Monotonic Reasoning. Lecture Notes in Artificial Intelligence, vol. 346. Springer Verlag, Berlin, 1-18. Google ScholarGoogle Scholar
  46. MAREK, W., NERODE, A., AND REMMEL, J. 1992. A Theory of Nonmonotonic Rule Systems II. Annals of Mathematics and Artificial Intelligence 5, 229-264.Google ScholarGoogle Scholar
  47. MAREK,W.AND TRUSZCZY' NSKI, M. 1993. Nonmonotonic Logic: Context-Dependent Reasoning. Springer Verlag, Berlin. Google ScholarGoogle Scholar
  48. MCCARTHY, J. 1980. Circumscription-A Form of Non-Monotonic Reasoning. Artificial Intelligence 13, 27-39.Google ScholarGoogle Scholar
  49. NAIT ABDALLAH, M. A. 1989. An Extended Framework for Default Reasoning. In Proc. International Conf. on Fundamentals of Computation Theory (FCT'89). Lecture Notes in Computer Science, vol. 380. Springer Verlag, New York, 339-348. Google ScholarGoogle Scholar
  50. NIEMELA, I. 1992. On the Decidability and Complexity of Autoepistemic Reasoning. Fundamenta Informaticae 17, 117-155. Google ScholarGoogle Scholar
  51. NIEMELA, I. 1996a. Implementing Circumscription Using a Tableau Method. In Proc. 12th European Conf. on Artificial Intelligence (ECAI'96). John Wiley & Sons, Chichester, 80-84.Google ScholarGoogle Scholar
  52. NIEMELA, I. 1996b. A Tableau Calculus for Minimal Model Reasoning. In Proc. International Conf. on Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX'96). Lecture Notes in Artificial Intelligence, vol. 1071. Springer Verlag, Berlin, 278-294. Google ScholarGoogle Scholar
  53. OLIVETTI, N. 1992. Tableaux and Sequent Calculus for Minimal Entailment. J. of Automated Reasoning 9, 99-139.Google ScholarGoogle Scholar
  54. OREVKOV, V. P. 1979. Lower Bounds for Increasing Complexity of Derivations after Cut Elimination. Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo Instituta im V. A. Steklova AN SSSR 88, 137-161. English translation in J. Soviet Mathematics, 2337-2350, 1982.Google ScholarGoogle Scholar
  55. PINTO,L.AND DYCKHOFF, R. 1995. Loop-Free Construction of Counter-Models for Intuitionistic Propositional Logic. In Symposia Gaussiana. Walter de Gruyter & Co, Berlin, 225-232.Google ScholarGoogle Scholar
  56. RABINOV, A. 1989. A Generalization of Collapsible Cases of Circumscription. Artificial Intelligence 38, 111-117. Google ScholarGoogle Scholar
  57. REITER, R. 1978. On Closed-World Data Bases. In Logic and Databases. Plenum Press, New York, 55-76.Google ScholarGoogle Scholar
  58. REITER, R. 1980. A Logic for Default Reasoning. Artificial Intelligence 13, 81-132.Google ScholarGoogle Scholar
  59. RISCH,V.AND SCHWIND, C. 1994. Tableau-based Characterization and Theorem Proving for Default Logic. J. of Automated Reasoning 13, 223-242.Google ScholarGoogle Scholar
  60. SCHLIPF, J. 1987. Decidability and Definability with Circumscription. Annals of Pure and Applied Logic 35, 173-191.Google ScholarGoogle Scholar
  61. SCHWARZ,G.AND TRUSZCZY' NSKI, M. 1996. Nonmonotonic Reasoning is Sometimes Simpler! Journal of Logic and Computation 6, 2, 295-308.Google ScholarGoogle Scholar
  62. SKURA, T. 1996. Refutations and Proofs in S4. In Proof Theory of Modal Logic. Applied Logic Series, vol. 2. Kluwer Academic Publishers, Dordrecht, 45-51.Google ScholarGoogle Scholar
  63. STATMAN, R. 1979. Lower Bounds on Herbrand's Theorem. In Proc. AMS 75. 104-107.Google ScholarGoogle Scholar
  64. STILLMAN, J. 1992. The Complexity of Propositional Default Logics. In Proc. 10th National Conf. on Artificial Intelligence (AAAI'92). MIT Press, Menlo Park, 794-799.Google ScholarGoogle Scholar
  65. TOMPITS, H. 1998. On Proof Complexities of First-Order Nonmonotonic Logics. Ph.D. thesis, Technische Universitat Wien, Favoritenstrasse 9-11, A-1040 Wien.Google ScholarGoogle Scholar
  66. VARZI, A. 1990. Complementary Sentential Logics. Bulletin of the Section of Logic 19, 112-116.Google ScholarGoogle Scholar

Index Terms

  1. Proof-complexity results for nonmonotonic reasoning

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image ACM Transactions on Computational Logic
            ACM Transactions on Computational Logic  Volume 2, Issue 3
            July 2001
            141 pages
            ISSN:1529-3785
            EISSN:1557-945X
            DOI:10.1145/377978
            Issue’s Table of Contents

            Copyright © 2001 ACM

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 1 July 2001
            Published in tocl Volume 2, Issue 3

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • article

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader