

skip to main content

 	

 Advanced Search

	

 Browse

	

 About

	

 	

 Sign in

	

 Register

	

	Advanced Search
	Journals
	Magazines
	Proceedings
	Books
	SIGs
	Conferences
	People
	

	More

	

 Search ACM Digital Library

SearchSearch

 Advanced Search

 Communications of the ACM
	Magazine Home
	Online First
	Latest Issue
	
	Archive
	Authors
	About
	CACM Affiliations
	ACM Award Winners

	More

 	Home
	Magazines
	Communications of the ACM
	Vol. 23, No. 11
	Design of a LISP-based microprocessor

article Free Access

Share on	
	
	
	
	

Design of a LISP-based microprocessor

 	Authors:
	 Guy Lewis Steele
 Massachusetts Institute of Technology, Cambridge

 Massachusetts Institute of Technology, Cambridge
View Profile

,
	 Gerald Jay Sussman
 Massachusetts Institute of Technology, Cambridge

 Massachusetts Institute of Technology, Cambridge
View Profile

Authors Info & Claims

 Communications of the ACMVolume 23Issue 11Nov. 1980pp 628–645https://doi.org/10.1145/359024.359031

Published:01 November 1980Publication History

	30citation
	3,147
	Downloads

Metrics
Total Citations30
Total Downloads3,147
Last 12 Months114
Last 6 weeks25

	Get Citation AlertsNew Citation Alert added!

This alert has been successfully added and will be sent to:
You will be notified whenever a record that you have chosen has been cited.

To manage your alert preferences, click on the button below.
Manage my Alerts

New Citation Alert!

Please log in to your account

	Save to BinderSave to Binder

Create a New BinderName

	Cancel
	Create

	Export Citation
	Publisher Site

	
	eReader
	PDF

Communications of the ACM
Volume 23, Issue 11

 PreviousArticleNextArticle

Skip Abstract SectionAbstract

We present a design for a class of computers whose “instruction sets” are based on LISP. LISP, like traditional stored-program machine languages and unlike most high-level languages, conceptually stores programs and data in the same way and explicitly allows programs to be manipulated as data, and so is a suitable basis for a stored-program computer architecture. LISP differs from traditional machine languages in that the program/data storage is conceptually an unordered set of linked record structures of various sizes, rather than an ordered, indexable vector of integers or bit fields of fixed size. An instruction set can be designed for programs expressed as trees of record structures. A processor can interpret these program trees in a recursive fashion and provide automatic storage management for the record structures.
We discuss a small-scale prototype VLSI microprocessor which has been designed and fabricated, containing a sufficiently complete instruction interpreter to execute small programs and a rudimentary storage allocator.

 References

	1 Backus, J. Can programming be liberated from the von Neumarm style? A functional style and its algebra of programs. Comm. ACM 21, 8 (Aug. 1978), 613-641.]] Google ScholarDigital Library
	2 Baker, H. B., Jr. List processing in real time on a serial computer. Comm. ACM 21, 4 (April 1978), 280-294.]] Google ScholarDigital Library
	3 Berkeley, E. C., and Bobrow, D. G., Ed. The Programming Language LISP: Its Operation and Applications. Inform. Internat., Inc., Cambridge, Mass. 1964.]]Google Scholar
	4 Bobrow, D. G., and Wegbreit, B. A model and stack implementation of multiple environments. Comm. A CM 16, 10 (Oct. 1973), 591-603.]] Google ScholarDigital Library
	5 Church, A. The Calculi of Lambda Conversion. In Annals of Mathematics Studies, Number 6, Princeton Univ. Press, Princeton, N.J., 1941 (reprinted by Klaus Reprint Corp., N.Y., 1965).]]Google Scholar
	6 Conrad, W. R. A compactifying garbage collector for ECL's nonhomogeneous heap. Tech. Rep. 2-74, Ctr. for Res. in Comptng. Technology, Harvard Univ. Cambridge, Mass., Feb. 1974.]]Google Scholar
	7 Deutsch, L. P., and Bobrow, D.G. An efficient, incremental, automatic garbage collector. Comm. A CM 19, 9 (Sept. 1976), 522- 526.]] Google ScholarDigital Library
	8 Galley, S.W., and Pfister, G. The MDL language. Programming Technology Division Document SYS, 11.01, Project MAC, MIT, Cambridge, Mass., Nov. 1975.]]Google Scholar
	9 Greenblatt, R. The LISP machine. Working Paper 79, MIT Artif. Intell. Lab., Cambridge, Mass., Nov. 1974.]]Google Scholar
	10 Gries, D. An exercise in proving parallel programs correct. Comm. ACM 20, 12 (Dec. 1977), 921-930.]] Google ScholarDigital Library
	11 Hansen, W.J. Compact list representation: Definition, garbage collection, and system implementation. Comm. ACM 12, 9 (Sept. 1969), 499-507.]] Google ScholarDigital Library
	12 Hart, TP., and Evans, T.G. Notes on implementing LISP for the M-460 computer. In The Programming Language LISP: Its Operation and Applications, E.C. Berkeley and D.G. Bobrow, Eds. Inform. Internat., Inc., Cambridge, Mass., 1964, pp. 191-203.]]Google Scholar
	13 Hewitt, C. Viewing control structures as patterns of passing messages. Artif. Intell. J. 8, 3 (June 1977), 323-364.]]Google ScholarDigital Library
	14 Holloway, J., Steele, G.L., Jr., Sussman, G.J., and Bell, A. The SCHEME-79 chip. Memo 559, MIT Artif. Intell. Lab. Cambridge, Mass., Jan. 1980.]]Google Scholar
	15 Hon, R., and Sequin, C. A Guide to LSI Implementation. Xerox PARC, Palo Alto, Calif., Sept. 1978.]]Google Scholar
	16 Knight, T. The CONS microprocessor. Working Paper 80, MIT Artif. Intell. Lab., Cambridge, Mass., Nov. 1974.]]Google Scholar
	17 Knuth, D.E. The Art of Computer Programming, Volume 1: Fundamental Algorithms. Addison-Wesley, Reading, Mass., 1968.]] Google ScholarDigital Library
	18 Levin, M. Mathematical logic for computer scientists. TR-131, Project MAC, MIT, Cambridge, Mass., June 1974.]] Google ScholarDigital Library
	19 The LISP Machine Group: Bawden, A., Greenblatt, R., Holloway, J., Knight, T., Moon, D., and Weinreb, D. LISP machine progress report. Memo 444, MIT Artif. Intell., Lab, Cambridge, Mass., Aug. 1977.]]Google Scholar
	20 McCarthy, J., et al. LISP 1.5 Programmer's Manual. MIT Press, Cambridge, Mass., 1962.]] Google ScholarDigital Library
	21 McDermott, D.V., and Sussman, G.J. The CONNIVER reference manual. Memo 295a, MIT Artif. Intell. Lab., Cambridge, Mass., Jan. 1974.]]Google Scholar
	22 Mead, C., and Conway, L. Introduction to VLSI Systems. Addison-Wesley, Reading, Mass., 1980.]] Google ScholarDigital Library
	23 Minsky, M.U A LISP garbage collector using serial secondary storage. Memo 58 (revised), MIT Artif. Intell. Lab., Cambridge, Mass., Dec. 1963.]] Google ScholarDigital Library
	24 Minsky, M.L. Computation: Fmite and Infinite Machines. Prentice-Hall, Englewood Cliffs, N.J., 1967.]] Google ScholarDigital Library
	25 Moon, D.A. MacLISP reference manual, revision 0. Project MAC, MIT, Cambridge, Mass,, April 1974.]]Google Scholar
	26 Morris, F.L. A time- and space-efficient garbage compaction algorithm. Comm. ACM 21, 8 (Aug. 1978), 662-665.]] Google ScholarDigital Library
	27 Moses, J. The function of FUNCTION in LISP. Memo 199, MIT Artif. Intell. Lab., Cambridge, Mass., June 1970.]]Google Scholar
	28 Reynolds, J.C. Definitional interpreters for higher order programming languages. Proc. ACM Nat. Conf., Boston, Mass., 1972, pp. 717-740.]] Google ScholarDigital Library
	29 Saunders, R.A. The LISP system for the Q-32 computer. In The Programming Language LISP: Its Operation and Applications, E.C. Berkeley and D.G. Bobrow, Eds., Inform. Internat., Inc., Cambridge, Mass., 1964, pp. 220-231.]]Google Scholar
	30 Schorr, H., and Waite, W.M. An efficient machine-independent procedure for garbage collection in various list structures. Comm. ACM 10, 8 (Aug. 1967), 501-506.]] Google ScholarDigital Library
	30a Stallman, R.M. Phantom Stacks: If you look too hard, they aren't there. MIT Artif. Intell. Lab. Memo. No. 556, Cambridge, Mass., July 1980.]]Google Scholar
	31 Steele, G.L., Jr. Compiler optimization based on viewing LAMBDA as Rename plus Goto. S.M. Th., MIT, Cambridge, Mass., May 1977.]]Google Scholar
	32 Steele, G.L., Jr. Debunking the "expensive procedure call" myth. Proc. ACM Nat. Conf. Seattle, Wash., Oct. 1977, pp. 153-162, revised as Memo 443, MIT Artif. Intell. Cambridge, Mass., Oct. 1977.]] Google ScholarDigital Library
	33 Steele, G.L. Jr., and Sussman, G.J. The revised report on SCHEME: A dialect of LISP. Memo 452, MIT Artif. Intell. Lab., Cambridge, Mass., 1978.]]Google Scholar
	34 Steele, G.L. Jr., and Sussman, G.J. The art of the interpreter; or, the modularity complex (parts zero, one, and two). Memo 453, MIT Artif. Intell. Lab., Cambridge, Mass., Jan. 1978.]] Google ScholarDigital Library
	35 Steele, G.L., Jr., and Sussman, G.J. Storage management in a LISP-based processor. Proc. Caltech Conf. on Very Large-Scale Integration, Pasadena, Calif., Jan. 1979, 227-241.]]Google Scholar
	36 Steele, G.L., Jr., and Sussman, G.J. Design of LISP-based processors; or, SCHEME: A dielectric LISP; or, finite memories considered harmful; or, LAMBDA: The ultimate opcode. Memo 514, MIT Artif. Intell. Lab, Cambridge, Mass., March 1979.]] Google ScholarDigital Library
	37 Steele, G.L., Jr., and Sussman, G:J. The dream of a lifetime: A lazy scoping mechanism. Memo 527, MIT Artif. Intetl. Lab., Cambridge, Mass., Nov. 1979.]]Google Scholar
	38 Sussman, G.J., and Steele, G.U Jr. SCHEME: An interpreter for extended lambda calculus. Memo 349, MIT Artif. Intell. Lab, Cambridge, Mass., Dec. 1975.]] Google ScholarDigital Library
	39 Wand, M. Continuation-based program transformation strategies. Tech. Rep. 61, Comp. Sci. Dept., Indiana Univ. Bloomington, Indiana, March 1977; J. ACM 27, 1 (Jan. 1980), 164-180.]] Google ScholarDigital Library
	40 Wegbreit, B., et al. ECL programmer's manual. Ctr. for Res. in Comptng. Technology, Harvard Univ., Cambridge, Mass., Dec. 1974.]]Google Scholar
	41 Weinreb, D., and Moon, D. LISP machine manual (preliminary version). MIT Artif. Intell. Lab., Cambridge, Mass., Nov. 1978.]] Google ScholarDigital Library

 Cited By
View all

 Index Terms

	Design of a LISP-based microprocessor
	Software and its engineering

	Software notations and tools

	General programming languages

	Language types

 Index terms have been assigned to the content through auto-classification.

 Recommendations

 	Revised Report on the Algorithmic Language Scheme

		The report gives a defining description of the programming language
Scheme. Scheme is a statically scoped and properly tail-recursive dialect of
the Lisp programming language invented by Guy Lewis Steele, Jr. and Gerald
Jay Sussman. It was designed to have ...

Read More

	miniKanren, live and untagged: quine generation via relational interpreters (programming pearl)
Scheme '12: Proceedings of the 2012 Annual Workshop on Scheme and Functional Programming

		We present relational interpreters for several subsets of Scheme, written in the pure logic programming language miniKanren. We demonstrate these interpreters running "backwards"---that is, generating programs that evaluate to a specified value---and ...

Read More

	A polymorphic modal type system for lisp-like multi-staged languages
POPL '06: Conference record of the 33rd ACM SIGPLAN-SIGACT symposium on Principles of programming languages

		This article presents a polymorphic modal type system and its principal type inference algorithm that conservatively extend ML by all of Lisp's staging constructs (the quasi-quotation system). The combination is meaningful because ML is a practical ...

Read More

 Comments

Please enable JavaScript to view thecomments powered by Disqus.

 Login options
Check if you have access through your login credentials or your institution to get full access on this article.
Sign in

Full Access
Get this Article

	Information
	Contributors

	Published in

Communications of the ACM Volume 23, Issue 11
Nov. 1980
41 pages
ISSN:0001-0782
EISSN:1557-7317
DOI:10.1145/359024
	Editor:
	Robert L. AshenhurstUniv. of Chicago, Chicago, IL

Issue’s Table of Contents

Copyright © 1980 ACM
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from

Sponsors

In-Cooperation

Publisher

Association for Computing Machinery
New York, NY, United States

 Publication History

 	Published: 1 November 1980

 Permissions
Request permissions about this article.
Request Permissions

Check for updates

Author Tags
	LISP
	SCHEME
	VLSI
	direct execution
	garbage collection
	high-level language architectures
	integrated circuits
	interpreters
	large-scale integration
	linked lists
	list structure
	microprocessors
	storage management
	tail recursion

Qualifiers
	article

Conference

Funding Sources

	

Other Metrics
View Article Metrics

	Bibliometrics
	Citations30

	Article Metrics
	30
Total Citations
View Citations
	3,147
Total Downloads

	Downloads (Last 12 months)114
	Downloads (Last 6 weeks)25

Other Metrics
View Author Metrics

	Cited By
View all

PDF Format
View or Download as a PDF file.
PDF

eReader
View online with eReader.
eReader

Digital Edition
View this article in digital edition.
View Digital Edition

	Figures
	Other

	
	

Share this Publication link
https://dl.acm.org/doi/10.1145/359024.359031
Copy Link

Share on Social Media

Share on	
	
	
	
	

	
	
	
	0References
	
	
	

Close Figure Viewer

Browse AllReturnChange zoom level

Caption

 View Issue’s Table of Contents

 Export Citations

Select Citation formatBibTeX
EndNote
ACM Ref

	Please download or close your previous search result export first before starting a new bulk export.
Preview is not available.
By clicking download,a status dialog will open to start the export process. The process may takea few minutes but once it finishes a file will be downloadable from your browser. You may continue to browse the DL while the export process is in progress.
Download

	

	Download citation
	Copy citation

 Footer

 Categories

	Journals
	Magazines
	Books
	Proceedings
	SIGs
	Conferences
	Collections
	People

 About

	About ACM Digital Library
	ACM Digital Library Board
	Subscription Information
	Author Guidelines
	Using ACM Digital Library
	All Holdings within the ACM Digital Library
	ACM Computing Classification System
	Digital Library Accessibility

 Join

	Join ACM
	Join SIGs
	Subscribe to Publications
	Institutions and Libraries

 Connect

	Contact
	Facebook
	Twitter
	Linkedin
	Feedback
	Bug Report

 The ACM Digital Library is published by the Association for Computing Machinery. Copyright © 2024 ACM, Inc.

	Terms of Usage
	Privacy Policy
	Code of Ethics

 Your Search Results Download Request
We are preparing your search results for download ...
We will inform you here when the file is ready.
Download now!

Your Search Results Download Request

Your file of search results citations is now ready.
Download now!

Your Search Results Download Request
Your search export query has expired. Please try again.

	

