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Multivariate resultants generalize the Sylvester resultant of two polynomials and characterize the solvability of a polynomial system. They also reduce the computation of all common roots to a problem in linear algebra. We propose a determinantal formula for the sparse resultant of an arbitrary system of n + 1 polynomials in n variables. This resultant generalizes the classical one and has significantly lower degree for polynomials that are sparse in the sense that their mixed volume is lower than their Bézout number. Our algorithm uses a mixed polyhedral subdivision of the Minkowski sum of the Newton polytopes in order to construct a Newton matrix. Its determinant is a nonzero multiple of the sparse resultant and the latter equals the GCD of   at most n + 1 such determinants. This construction implies a restricted version of an effective sparse Nullstellensatz. For an arbitrary specialization of the coefficients, there are two methods that use one extra variable and yield the sparse resultant. This is the first algorithm to handle the general case with complexity polynomial in the resultant degree and simply exponential in n. We conjecture its extension to producing an exact rational expression for the sparse resultant.
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