skip to main content
article
Free Access

A subdivision-based algorithm for the sparse resultant

Published:01 May 2000Publication History
Skip Abstract Section

Abstract

Multivariate resultants generalize the Sylvester resultant of two polynomials and characterize the solvability of a polynomial system. They also reduce the computation of all common roots to a problem in linear algebra. We propose a determinantal formula for the sparse resultant of an arbitrary system of n + 1 polynomials in n variables. This resultant generalizes the classical one and has significantly lower degree for polynomials that are sparse in the sense that their mixed volume is lower than their Bézout number. Our algorithm uses a mixed polyhedral subdivision of the Minkowski sum of the Newton polytopes in order to construct a Newton matrix. Its determinant is a nonzero multiple of the sparse resultant and the latter equals the GCD of at most n + 1 such determinants. This construction implies a restricted version of an effective sparse Nullstellensatz. For an arbitrary specialization of the coefficients, there are two methods that use one extra variable and yield the sparse resultant. This is the first algorithm to handle the general case with complexity polynomial in the resultant degree and simply exponential in n. We conjecture its extension to producing an exact rational expression for the sparse resultant.

References

  1. AHO, A. V., HOPCROFT, J. E., AND ULLMAN, J. D. 1974. The Design and Analysis of Computer Algorithms. Addison-Wesley, Reading, Mass. Google ScholarGoogle Scholar
  2. AUZINGER, W., AND STETTER, H. J. 1988. An elimination algorithm for the computation of all zeros of a system of multivariate polynomial equations. In Proceedings of the International Conference on Numerical Mathematics, International Series of Numerical Mathematics, vol. 86. Birkhfiuser, Basel, Switzerland, pp. 12-30.Google ScholarGoogle Scholar
  3. BAJAJ, C., GARRITY, T., AND WARREN, J. 1988. On the applications of multi-equational resultants. Tech. Rep. 826. Purdue Univ., West Lafayette, Ind.Google ScholarGoogle Scholar
  4. BERNSTEIN, D.N. 1975. The number of roots of a system of equations. Funct. Anal, Appl. 9, 2, 183-185.Google ScholarGoogle Scholar
  5. BILLERA, L. J., AND STURMFELS, B. 1992. Fiber polytopes. Ann. Math. 135, 527-549.Google ScholarGoogle Scholar
  6. BROWNAWELL, D. 1987. Bounds for the degree in the Nullstellensatz. Ann. Math., Second Ser. 126, 3, 577-591.Google ScholarGoogle Scholar
  7. CANNY, J.F. 1988. The Complexity of Robot Motion Planning. MIT Press, Cambridge, Mass. Google ScholarGoogle Scholar
  8. CANNY, J., AND EMIRIS, I. 1993. An efficient algorithm for the sparse mixed resultant. In Proceedings of the International Symposium on Applied Algebra, Algebraic Algorithms and Error Correction Codes (Puerto Rico), G. Cohen, T. Mora, and O. Moreno, Eds. Lecture Notes in Computer Science, vol. 263. Springer-Verlag, Berlin, Germany, pp. 89-104. Google ScholarGoogle Scholar
  9. CANNY, J., AND PEDERSEN, P. 1993. An algorithm for the Newton resultant. Tech. Rep. 1394. Comput. Science Dept., Cornell Univ., Ithaca, N.Y. Google ScholarGoogle Scholar
  10. CHISTOV, A. 1986. Polynomial-Time factoring algorithm for polynomials and finding components of varieties in subexponential time. J. Soviet Math. 36, 1838-1882.Google ScholarGoogle Scholar
  11. CHISTOV, A. L., AND GRIGORYEV, D.Y. 1984. Complexity of quantifier elimination in the theory of algebraically closed fields. In Proceedings of the Symposium on Mathematical Foundations of Computer Science, M. P. Chytil and V. Koubel, Eds. Lecture Notes in Computer Science, vol. 176. Springer-Verlag, New York, pp. 17-31. Google ScholarGoogle Scholar
  12. COPPERSMITH, D., AND WINOGRAD, S. 1990. Matrix multiplication via arithmetic progressions. J. Symb. Computat. 9, 251-280. Google ScholarGoogle Scholar
  13. EHRART, E. 1967. Sur un problSme de gdomdtrie diophantienne, I. Polyedres et reseaux. J. Reine Agnew. Math. 226, 1-29.Google ScholarGoogle Scholar
  14. EMIRIS, I.Z. 1996. On the complexity of sparse elimination. J. Complex. 12, 134-166.{ref14} Google ScholarGoogle Scholar
  15. EMIRIS, I.Z. 1997. A general solver based on sparse resultants: Numerical issues and kinematic applications. Tech. Rep. 3110. INRIA, Sophia-Antipolis, France.Google ScholarGoogle Scholar
  16. EMIRIS, I.Z. 1998. A complete implementation for computing general dimensional convex hulls. Int. J. Computat. Geom. Appl., Special Issue on Geometric Software 8, 2, 223-253.Google ScholarGoogle Scholar
  17. EMIRIS, I. Z., AND CANNY, J.F. 1995. Efficient incremental algorithms for the sparse resultant and the mixed volume. J. Symb. Computat. 20, 2 (Aug.), 177-149. Google ScholarGoogle Scholar
  18. EMIRIS, I. Z., AND MOURRAIN, B. 1999. Computer algebra methods for studying and computing molecular conformations. Algorithmica (Special Issue on Algorithms for Computational Biology) 25, 372-402.Google ScholarGoogle Scholar
  19. EMIRIS, I. Z., AND PAN, V.Y. 1997. The structure of sparse resultant matrices. In Proceedings of the 1997 ACM International Symposium on Symbolic and Algebraic Computation (ISSAC '97) (Maui, Hawaii, July 21-23). ACM, New York, pp. 189-196. Google ScholarGoogle Scholar
  20. GELFAND, I. M., KAPRANOV, M. M., AND ZELEVINSKY, A.V. 1994. Discriminants and Resultants. Brikhfiuser, Boston, Mass.Google ScholarGoogle Scholar
  21. GRIGORYEV, D. 1986. Polynomial factoring over a finite field and solving systems of algebraic equations. J. Soviet Math. 34, 1762-1803.Google ScholarGoogle Scholar
  22. GRC)TSCHEL, M., LOVASZ, L., AND SCHRIJVER, A. 1993. Geometric Algorithms and Combinatorial Optimization. 2nd ed. Springer-Verlag, Berlin, Germany.Google ScholarGoogle Scholar
  23. GUISTI, M., AND HEINTZ, J. 1991. Algorithmes-disons rapides-pour la ddcomposition d'une varidt6 algdbrique en composantes irrdductibles et 6quidimensionelles. In Effective Methods in Algebraic Geometry, T. Mora and C. Traverso, Eds. Progress in Mathematics, vol. 94. Birkhfiuser, Boston, Mass., pp. 169-193.Google ScholarGoogle Scholar
  24. GUISTI, M., HEINTZ, J., MORAIS, J. E., AND PARDO, L.M. 1995. When polynomial equation systems can be "solved" fast? In Proceedings of the International Symposium on Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, G. Cohn, M. Giusti, and T. Mora, Eds. Lecture Notes in Computer Science. Springer-Verlag, Berlin, Germany, pp. 205-231. Google ScholarGoogle Scholar
  25. HAFNER, J. L., AND MCCURLEY, K.S. 1991. Asymptotically fast triangularization of matrices over rings. SIAM J. Comput. 20, 6, 1068-1083. Google ScholarGoogle Scholar
  26. HUBER, B., AND STRUMFELS, B. 1995. A polyhedral method for solving sparse polynomial systems. Math. Comput. 64, 212, 1542-1555. Google ScholarGoogle Scholar
  27. KAPUR, D., AND SAXENA, T. 1995. Comparison of various multivariate resultant formulations. In Proceedings of the 1995 A CM International Symposium on Symbolic and Algebraic Computation (ISSAC '95) (Montreal, Ont., Canada, July 10-12). ACM, New York, pp. 187-194. Google ScholarGoogle Scholar
  28. KARMARKAR, N. 1984. A new polynomial-time algorithm for linear programming. Combinatorica 4, 373-395. Google ScholarGoogle Scholar
  29. KHOVANSKII, A. G. 1978. Newton polyhedra and the genus of complete intersections. Funktsional'nyi Analiz i Ego Prilozheniya 12, 1 (Jan.-Mar.), 51-61.Google ScholarGoogle Scholar
  30. KHOVANSKII, A.G. 1991. Fewnomials. AMS Press. Providence, R.I.Google ScholarGoogle Scholar
  31. KOLLAR, J. 1988. Sharp effective Nullstellensatz. J. Amer. Math. Soc. 1, 963-975.Google ScholarGoogle Scholar
  32. KRISHNAN, S., AND MANOCHA, D. 1995. Numeric-symbolic algorithms for evaluating one-dimensional algebraic sets. In Proceedings of the 1995 ACM International Symposium on Symbolic and Algebraic (ISSAC '95) Computation (Montreal, Ont., Canada, July 10-12). ACM, New York, pp. 59-67. Google ScholarGoogle Scholar
  33. KUSHNIRENKO, A. G. 1976. Newton polytopes and the Bezout theorem. Funktsional'nyi Analiz i Ego Prilozheniya 10, 3 (July-Sept.).Google ScholarGoogle Scholar
  34. LAZARD, D. 1981. Rdsolution des systSmes d'l~quations algdbriques. Theoret. Comput. Sci. 15, 77-110.Google ScholarGoogle Scholar
  35. LICKTEIG, T., AND MEER, K. 1995. A note on testing the resultant. J. Complex. 11, 3, 344-351. Loos, R. 1982. Generalized polynomial remainder sequences. In Computer Algebra: Symbolic and Algebraic Computation, 2nd ed. B. Buchberger, G. E. Collins, and R. Loos, Eds. Springer-Verlag, Wien, Austria, pp. 115-137. Google ScholarGoogle Scholar
  36. MANOCHA, D. 1994. Solving systems of polynomial equations. IEEE Comput. Graphics Appl. Special Issue on Solid Modeling, 46-55. Google ScholarGoogle Scholar
  37. MANOCHA, D., AND CANNY, J. 1993. Multipolynomial resultant algorithms. J. Symb. Computat. 15, 2, 99-122. Google ScholarGoogle Scholar
  38. {ref11}MOURRAIN, B. 1997. Isolated points, duality and residues. J. Pure Appl. Algebra. Special Issue on Algorithms for Algebra 117 & 118 (May), 469-494.Google ScholarGoogle Scholar
  39. MOURRAIN, B. 1998. Computing isolated roots by matrix methods. J. Symb. Computat. 26, 715-738. Google ScholarGoogle Scholar
  40. PEDERSEN, P., AND STURMFELS, B. 1993. Product formulas for resultants and Chow forms. Math. Z. 214, 337-396.Google ScholarGoogle Scholar
  41. PEDERSEN, P., AND STURMFELS, B. 1996. Mixed monomial bases. In Effective Methods in Algebraic Geometry, L. Gonzalez-Vega and T. Recio, Eds. Progress in Mathematics, vol. 143. Birkhfiuser, Boston, Mass. pp. 307-315. Google ScholarGoogle Scholar
  42. RAGHAVAN, M., AND ROTH, B. 1995. Solving polynomial systems for the kinematics analysis and synthesis of mechanisms and robot manipulators. Trans. ASME, Special 50th Anniversary Design Issue 117 (June), 71-79.Google ScholarGoogle Scholar
  43. RENEGAR, J. 1992. On the computational complexity of the first-order theory of the reals. J. Symb. Computat. 13, 3, 255-352. Google ScholarGoogle Scholar
  44. ROJAS, J. M. 1999. Solving degenerate sparse polynomial systems faster. J. Symb. Computat. Special Issue on Elimination 28, 155-186. Google ScholarGoogle Scholar
  45. SCHWARTZ, J.T. 1980. Fast probabilistic algorithms for verification of polynomial identies. J. ACM 27, 4 (Oct.), 701-717. Google ScholarGoogle Scholar
  46. SCHNEIDER, R. 1993. Convex Bodies: The Brunn-Minkowski Theory. Cambridge University Press, Cambridge, England.Google ScholarGoogle Scholar
  47. STANLEY, R.P. 1980. Decompositions of rational convex polyhedra. In Combinatorial Methematics, Optimal Designs and Their Applications, J. Srivastava, Ed. Ann. Disc. Math. 6. North-Holland, Amsterdam, The Netherlands, pp. 333-342.Google ScholarGoogle Scholar
  48. STURMFELS, B. 1993. Sparse elimination theory. In Proceedings of Computational Algebraic Geometry and Commut. Algebra 1991 (Cortona, Italy). Cambridge University Press, Cambridge, England, pp. 264-298.Google ScholarGoogle Scholar
  49. STURMFELS, B. 1994. On the Newton polytope of the resultant. J. Algeb. Combinat. 3, 207-236. Google ScholarGoogle Scholar
  50. VAN DER WAERDEN, B.L. 1950. Modern Algebra, 3rd ed. F. Unger Publishing Co., New York.Google ScholarGoogle Scholar
  51. VERSCHELDE, J., GATERMANN, K., AND COOLS, R. 1996. Mixed volume computation by dynamic lifting applied to polynomial system solving. Disc. Comput. Geom. 16, 1, 69-112.Google ScholarGoogle Scholar
  52. ZIPPEL, R. Effective Polynomial Computation. Kluwer Academic Publishers, Boston, Mass.Google ScholarGoogle Scholar

Index Terms

  1. A subdivision-based algorithm for the sparse resultant

            Recommendations

            Comments

            Login options

            Check if you have access through your login credentials or your institution to get full access on this article.

            Sign in

            Full Access

            PDF Format

            View or Download as a PDF file.

            PDF

            eReader

            View online with eReader.

            eReader