skip to main content
10.1145/3298689.3347015acmotherconferencesArticle/Chapter ViewAbstractPublication PagesrecsysConference Proceedingsconference-collections
short-paper

Enhancing VAEs for collaborative filtering: flexible priors & gating mechanisms

Published:10 September 2019Publication History

ABSTRACT

Neural network based models for collaborative filtering have started to gain attention recently. One branch of research is based on using deep generative models to model user preferences where variational autoencoders were shown to produce state-of-the-art results. However, there are some potentially problematic characteristics of the current variational autoencoder for CF. The first is the too simplistic prior that VAEs incorporate for learning the latent representations of user preference. The other is the model's inability to learn deeper representations with more than one hidden layer for each network.

Our goal is to incorporate appropriate techniques to mitigate the aforementioned problems of variational autoencoder CF and further improve the recommendation performance. Our work is the first to apply flexible priors to collaborative filtering and show that simple priors (in original VAEs) may be too restrictive to fully model user preferences and setting a more flexible prior gives significant gains. We experiment with the VampPrior, originally proposed for image generation, to examine the effect of flexible priors in CF. We also show that VampPriors coupled with gating mechanisms outperform SOTA results including the Variational Autoencoder for Collaborative Filtering by meaningful margins on 2 popular benchmark datasets (MovieLens & Netflix).

References

  1. Alemi, A. A., Fischer, I., Dillon, J. V., & Murphy, K. (2016). Deep variational information bottleneck. arXiv preprint arXiv:1612.00410.Google ScholarGoogle Scholar
  2. Alemi, A., Poole, B., Fischer, I., Dillon, J., Saurous, R. A., & Murphy, K. (2018, July). Fixing a Broken ELBO. In International Conference on Machine Learning (pp. 159--168).Google ScholarGoogle Scholar
  3. Burgess, C. P., Higgins, I., Pal, A., Matthey, L., Watters, N., Desjardins, G., & Lerchner, A. (2018). Understanding disentangling in $\beta $-VAE. arXiv preprint arXiv:1804.03599.Google ScholarGoogle Scholar
  4. Dauphin, Y. N., Fan, A., Auli, M., & Grangier, D. (2017, August). Language modeling with gated convolutional networks. In Proceedings of the 34th International Conference on Machine Learning-Volume 70 (pp. 933--941). JMLR. org. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Dieng, A. B., Kim, Y., Rush, A. M., & Blei, D. M. (2018). Avoiding latent variable collapse with generative skip models. arXiv preprint arXiv:1807.04863.Google ScholarGoogle Scholar
  6. Dilokthanakul, N., Mediano, P. A., Garnelo, M., Lee, M. C., Salimbeni, H., Arulkumaran, K., & Shanahan, M. (2016). Deep unsupervised clustering with gaussian mixture variational autoencoders. arXiv preprint arXiv:1611.02648.Google ScholarGoogle Scholar
  7. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Goyal, P., Hu, Z., Liang, X., Wang, C., & Xing, E. P. (2017). Nonparametric variational auto-encoders for hierarchical representation learning. In Proceedings of the IEEE International Conference on Computer Vision (pp. 5094--5102).Google ScholarGoogle ScholarCross RefCross Ref
  9. He, X., Liao, L., Zhang, H., Nie, L., Hu, X., & Chua, T. S. (2017, April). Neural collaborative filtering. In Proceedings of the 26th International Conference on World Wide Web (pp. 173--182). International World Wide Web Conferences Steering Committee. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Hidasi, B., Karatzoglou, A., Baltrunas, L., & Tikk, D. (2015). Session-based recommendations with recurrent neural networks. arXiv preprint arXiv:1511.06939.Google ScholarGoogle Scholar
  11. Hoffman, M. D., & Johnson, M. J. (2016). Elbo surgery: yet another way to carve up the variational evidence lower bound. In Workshop in Advances in Approximate Bayesian Inference, NIPS.Google ScholarGoogle Scholar
  12. Hsu, W. N., Zhang, Y., & Glass, J. (2017). Unsupervised learning of disentangled and interpretable representations from sequential data. In Advances in neural information processing systems (pp. 1878--1889). Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Hu, Y., Koren, Y., & Volinsky, C. (2008, December). Collaborative Filtering for Implicit Feedback Datasets. In ICDM (Vol. 8, pp. 263--272). Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114.Google ScholarGoogle Scholar
  15. Liang, D., Krishnan, R. G., Hoffman, M. D., & Jebara, T. (2018, April). Variational autoencoders for collaborative filtering. In Proceedings of the 2018 World Wide Web Conference on World Wide Web (pp. 689--698). International World Wide Web Conferences Steering Committee. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., & Frey, B. (2015). Adversarial autoencoders. arXiv preprint arXiv:1511.05644.Google ScholarGoogle Scholar
  17. Marlin, B. (2004). Collaborative filtering: A machine learning perspective (pp. 2239--2239). Toronto: University of Toronto.Google ScholarGoogle Scholar
  18. Nalisnick, E., & Smyth, P. (2017, April). Stick-breaking variational autoencoders. In International Conference on Learning Representations (ICLR).Google ScholarGoogle Scholar
  19. Ning, X., & Karypis, G. (2011, December). Slim: Sparse linear methods for top-n recommender systems. In 2011 IEEE 11th International Conference on Data Mining (pp. 497--506). IEEE. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Quadrana, M., Karatzoglou, A., Hidasi, B., & Cremonesi, P. (2017, August). Personalizing session-based recommendations with hierarchical recurrent neural networks. In Proceedings of the Eleventh ACM Conference on Recommender Systems (pp. 130--137). ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Rakesh, V., Wang, S., Shu, K., & Liu, H. (2019, January). Linked variational autoencoders for inferring substitutable and supplementary items. In Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining (pp. 438--446). ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Sachdeva, N., Manco, G., Ritacco, E., & Pudi, V. (2019, January). Sequential Variational Autoencoders for Collaborative Filtering. In Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining (pp. 600--608). ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Sedhain, S., Menon, A. K., Sanner, S., & Xie, L. (2015, May). Autorec: Autoencoders meet collaborative filtering. In Proceedings of the 24th International Conference on World Wide Web (pp. 111--112). ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Sønderby, C. K., Raiko, T., Maaløe, L., Sønderby, S. K., & Winther, O. (2016). Ladder variational autoencoders. In Advances in neural information processing systems (pp. 3738--3746).Google ScholarGoogle Scholar
  25. Tomczak, J., & Welling, M. (2018, March). VAE with a VampPrior. In International Conference on Artificial Intelligence and Statistics (pp. 1214--1223).Google ScholarGoogle Scholar
  26. Van den Oord, A., Dieleman, S., & Schrauwen, B. (2013). Deep content-based music recommendation. In Advances in neural information processing systems (pp. 2643--2651). Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Wang, H., Wang, N., & Yeung, D. Y. (2015, August). Collaborative deep learning for recommender systems. In Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining (pp. 1235--1244). ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Wang, J., Yu, L., Zhang, W., Gong, Y., Xu, Y., Wang, B., ... & Zhang, D. (2017, August). Irgan: A minimax game for unifying generative and discriminative information retrieval models. In Proceedings of the 40th International ACM SIGIR conference on Research and Development in Information Retrieval (pp. 515--524). ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Wu, C. Y., Ahmed, A., Beutel, A., Smola, A. J., & Jing, H. (2017, February). Recurrent recommender networks. In Proceedings of the tenth ACM international conference on web search and data mining (pp. 495--503). ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Wu, Y., DuBois, C., Zheng, A. X., & Ester, M. (2016, February). Collaborative denoising auto-encoders for top-n recommender systems. In Proceedings of the Ninth ACM International Conference on Web Search and Data Mining (pp. 153--162). ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Zhang, S., Yao, L., Sun, A., & Tay, Y. (2019). Deep learning based recommender system: A survey and new perspectives. ACM Computing Surveys (CSUR), 52(1), 5. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Enhancing VAEs for collaborative filtering: flexible priors & gating mechanisms

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Other conferences
        RecSys '19: Proceedings of the 13th ACM Conference on Recommender Systems
        September 2019
        635 pages
        ISBN:9781450362436
        DOI:10.1145/3298689

        Copyright © 2019 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 10 September 2019

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • short-paper

        Acceptance Rates

        RecSys '19 Paper Acceptance Rate36of189submissions,19%Overall Acceptance Rate254of1,295submissions,20%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader