skip to main content
10.1145/3300061.3345447acmconferencesArticle/Chapter ViewAbstractPublication PagesmobicomConference Proceedingsconference-collections
research-article

Occlumency: Privacy-preserving Remote Deep-learning Inference Using SGX

Authors Info & Claims
Published:11 October 2019Publication History

ABSTRACT

Deep-learning (DL) is receiving huge attention as enabling techniques for emerging mobile and IoT applications. It is a common practice to conduct DNN model-based inference using cloud services due to their high computation and memory cost. However, such a cloud-offloaded inference raises serious privacy concerns. Malicious external attackers or untrustworthy internal administrators of clouds may leak highly sensitive and private data such as image, voice and textual data. In this paper, we propose Occlumency, a novel cloud-driven solution designed to protect user privacy without compromising the benefit of using powerful cloud resources. Occlumency leverages secure SGX enclave to preserve the confidentiality and the integrity of user data throughout the entire DL inference process. DL inference in SGX enclave, however, impose a severe performance degradation due to limited physical memory space and inefficient page swapping. We designed a suite of novel techniques to accelerate DL inference inside the enclave with a limited memory size and implemented Occlumency based on Caffe. Our experiment with various DNN models shows that Occlumency improves inference speed by 3.6x compared to the baseline DL inference in SGX and achieves a secure DL inference within 72% of latency overhead compared to inference in the native environment.

References

  1. General Data Protection Regulation. Retrieved July 18, 2019 from https://eugdpr.orgGoogle ScholarGoogle Scholar
  2. Monsoon Power Monitor. Retrieved July 18, 2019 from https://www. msoon.com/online-storeGoogle ScholarGoogle Scholar
  3. ONNX Open Source Model Zoo. Retrieved July 18, 2019 from https: //github.com/onnx/modelsGoogle ScholarGoogle Scholar
  4. The Microsoft Cognitive Toolkit. Retrieved July 18, 2019 from https: //www.microsoft.com/en-us/cognitive-toolkitGoogle ScholarGoogle Scholar
  5. TP-Link AC1900. Retrieved July 18, 2019 from https://www.tplink. com/us/products/details/cat-9_Archer-C9.htmlGoogle ScholarGoogle Scholar
  6. Protocol Buffers. Retrieved July 18, 2019 from http://code.google.com/ apis/protocolbuffers/Google ScholarGoogle Scholar
  7. ARM Security Technology: Building a Secure System using TrustZone® Technology. http://infocenter.arm.com/ help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC- 009492C_trustzone_security_whitepaper.pdfGoogle ScholarGoogle Scholar
  8. xxHash. Retrieved July 18, 2019 from https://cyan4973.github.io/ xxHash/Google ScholarGoogle Scholar
  9. Intel Software Guard Extensions (Intel SGX). Retrieved July 18, 2019 from https://software.intel.com/en-us/sgxGoogle ScholarGoogle Scholar
  10. Intel Software Guard Extensions (Intel SGX) SDK. Retrieved July 18, 2019 from https://software.intel.com/en-us/sgx-sdkGoogle ScholarGoogle Scholar
  11. Caffe Model Zoo. Retrieved July 18, 2019 from http://caffe. berkeleyvision.org/model_zoo.htmlGoogle ScholarGoogle Scholar
  12. OpenBLAS. Retrieved July 18, 2019 from https://www.openblas.net/Google ScholarGoogle Scholar
  13. Keystone Enclave: An Open-Source Secure Enclave for RISC-V. Retrieved July 18, 2019 from https://docs.keystone-enclave.org/en/latest/Google ScholarGoogle Scholar
  14. TensorFlow: An open source machine learning framework for everyone. Retrieved July 18, 2019 from https://www.tensorflow.org/Google ScholarGoogle Scholar
  15. Facebook Security Breach Exposes Accounts of 50 Million Users. Retrieved July 18, 2019 from https://www.nytimes.com/2018/09/28/ technology/facebook-hack-data-breach.htmlGoogle ScholarGoogle Scholar
  16. Google Cloud TPU. Retrieved July 18, 2019 from https://cloud.google. com/tpuGoogle ScholarGoogle Scholar
  17. Huawei Kirin 970 - HiSilicon. Retrieved July 18, 2019 from https: //en.wikichip.org/wiki/hisilicon/kirin/970Google ScholarGoogle Scholar
  18. Microsoft Azure Cognitive Services. Retrieved July 18, 2019 from https://azure.microsoft.com/en-us/services/cognitive-services/Google ScholarGoogle Scholar
  19. Dakshi Agrawal and Charu C. Aggarwal. 2001. On the Design and Quantification of Privacy Preserving Data Mining Algorithms. In Proceedings of the Twentieth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS '01). ACM, New York, NY, USA, 247--255. https://doi.org/10.1145/375551.375602Google ScholarGoogle Scholar
  20. Hany Hassan amd Anthony Aue, Chang Chen, Vishal Chowdhary, Jonathan Clark, Christian Federmann, Marcin Junczys-Dowmunt Xuedong Huang, William Lewis, Mu Li, Shujie Liu, Tie-Yan Liu, Renqian Luo, Arul Menezes, Tao Qin, Frank Seide, Xu Tan, Fei Tian, Lijun Wu, ShuangzhiWu, Yingce Xia, Dongdong Zhang, Zhirui Zhang, and Ming Zhou. 2018. Achieving Human Parity on Automatic Chinese to English News Translation. (March 2018). https://www.microsoft.com/enus/ research/uploads/prod/2018/03/final-achieving-human.pdfGoogle ScholarGoogle Scholar
  21. Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre Martin, Christian Priebe, Joshua Lind, Divya Muthukumaran, Dan O'Keeffe, Mark L. Stillwell, David Goltzsche, David Eyers, Rüdiger Kapitza, Peter Pietzuch, and Christof Fetzer. 2016. SCONE: Secure Linux Containers with Intel SGX. In Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation (OSDI'16). USENIX Association, Berkeley, CA, USA, 689--703. http://dl.acm.org/ citation.cfm?id=3026877.3026930Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen, Srdjan Capkun, and Ahmad-Reza Sadeghi. 2017. Software Grand Exposure: SGX Cache Attacks Are Practical. CoRR abs/1702.07521 (2017). arXiv:1702.07521 http://arxiv.org/abs/1702.07521Google ScholarGoogle Scholar
  23. Kumar Chellapilla, Sidd Puri, and Patrice Simard. 2006. High Performance Convolutional Neural Networks for Document Processing. In Tenth International Workshop on Frontiers in Handwriting Recognition, Guy Lorette (Ed.). Université de Rennes 1, Suvisoft, La Baule (France). https://hal.inria.fr/inria-00112631Google ScholarGoogle Scholar
  24. Minsik Cho and Daniel Brand. 2017. MEC: Memory-efficient Convolution for Deep Neural Network. In Proceedings of the 34th International Conference on Machine Learning (ICML '17), Vol. 70. PMLR, Sydney, NSW, Australia, 815--824. http://proceedings.mlr.press/v70/cho17a. htmlGoogle ScholarGoogle Scholar
  25. Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained. IACR Cryptology ePrint Archive (2016), 86. http://eprint.iacr.org/2016/086Google ScholarGoogle Scholar
  26. Victor Costan, Ilia A. Lebedev, and Srinivas Devadas. 2016. Sanctum: Minimal Hardware Extensions for Strong Software Isolation. In 25th USENIX Security Symposium (USENIX Security '16). USENIX Association, Austin, TX, 857--874. https://www.usenix.org/conference/ usenixsecurity16/technical-sessions/presentation/costanGoogle ScholarGoogle Scholar
  27. Tom Woller David Kaplan, Jeremy Powell. AMD memory encryption. http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/ 2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdfGoogle ScholarGoogle Scholar
  28. Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael Naehrig, and John Wernsing. 2016. CryptoNets: Applying Neural Networks to Encrypted Data with High Throughput and Accuracy. In Proceedings of The 33rd International Conference on Machine Learning (ICML '16), Vol. 48. PMLR, New York, NY, USA, 201--210. http://proceedings.mlr.press/v48/gilad-bachrach16.htmlGoogle ScholarGoogle Scholar
  29. Yunchao Gong, Liu Liu, Ming Yang, and Lubomir D. Bourdev. 2014. Compressing Deep Convolutional Networks using Vector Quantization. CoRR abs/1412.6115 (2014). arXiv:1412.6115 http://arxiv.org/abs/ 1412.6115Google ScholarGoogle Scholar
  30. Johannes Götzfried, Moritz Eckert, Sebastian Schinzel, and Tilo Müller. 2017. Cache Attacks on Intel SGX. In Proceedings of the 10th European Workshop on Systems Security (EuroSec'17). ACM, New York, NY, USA, Article 2, 6 pages. https://doi.org/10.1145/3065913.3065915Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Zhongshu Gu, Heqing Huang, Jialong Zhang, Dong Su, Ankita Lamba, Dimitrios Pendarakis, and Ian Molloy. 2018. Securing Input Data of Deep Learning Inference Systems via Partitioned Enclave Execution. CoRR abs/1807.00969 (2018). arXiv:1807.00969 http://arxiv.org/abs/ 1807.00969Google ScholarGoogle Scholar
  32. Shay Gueron. A Memory Encryption Engine Suitable for General Purpose Processors. Cryptology ePrint Archive, Report 2016/204. https://eprint.iacr.org/2016/204Google ScholarGoogle Scholar
  33. Marcus Hähnel, Weidong Cui, and Marcus Peinado. 2017. High- Resolution Side Channels for Untrusted Operating Systems. In 2017 USENIX Annual Technical Conference (ATC '17). USENIX Association, Santa Clara, CA, 299--312. https://www.usenix.org/conference/atc17/ technical-sessions/presentation/hahnelGoogle ScholarGoogle Scholar
  34. Song Han, Huizi Mao, and William J. Dally. 2015. Deep Compression: Compressing Deep Neural Network with Pruning, Trained Quantization and Huffman Coding. CoRR abs/1510.00149 (2015). arXiv:1510.00149 http://arxiv.org/abs/1510.00149Google ScholarGoogle Scholar
  35. Song Han, Jeff Pool, John Tran, and William J. Dally. 2015. Learning both Weights and Connections for Efficient Neural Network. In Advances in Neural Information Processing Systems 28 (NIPS '15). Curran Associates, Inc., Montreal, Quebec, Canada, 1135-- 1143. http://papers.nips.cc/paper/5784-learning-both-weights-andconnections- for-efficient-neural-networkGoogle ScholarGoogle Scholar
  36. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual Learning for Image Recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR '16). Las Vegas, NV, USA, 770--778. https://doi.org/10.1109/CVPR.2016.90Google ScholarGoogle Scholar
  37. Ehsan Hesamifard, Hassan Takabi, and Mehdi Ghasemi. 2017. CryptoDL: Deep Neural Networks over Encrypted Data. CoRR abs/1711.05189 (2017). arXiv:1711.05189 http://arxiv.org/abs/1711. 05189Google ScholarGoogle Scholar
  38. Tyler Highlander and Andres Rodriguez. 2016. Very Efficient Training of Convolutional Neural Networks using Fast Fourier Transform and Overlap-and-Add. CoRR abs/1601.06815 (2016). arXiv:1601.06815 http://arxiv.org/abs/1601.06815Google ScholarGoogle Scholar
  39. Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. CoRR abs/1704.04861 (2017). arXiv:1704.04861 http://arxiv.org/abs/1704.04861Google ScholarGoogle Scholar
  40. Jie Hu, Li Shen, and Gang Sun. 2018. Squeeze-and-Excitation Networks. In 2018 IEEE Conference on Computer Vision and Pattern Recognition (CVPR '18). Salt Lake City, UT, USA, 7132--7141. https://doi.org/10. 1109/CVPR.2018.00745Google ScholarGoogle Scholar
  41. Tyler Hunt, Congzheng Song, Reza Shokri, Vitaly Shmatikov, and Emmett Witchel. 2018. Chiron: Privacy-preserving Machine Learning as a Service. CoRR abs/1803.05961 (2018). arXiv:1803.05961 http: //arxiv.org/abs/1803.05961Google ScholarGoogle Scholar
  42. Tyler Hunt, Zhiting Zhu, Yuanzhong Xu, Simon Peter, and Emmett Witchel. 2016. Ryoan: A Distributed Sandbox for Untrusted Computation on Secret Data. In Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation (OSDI'16). USENIX Association, Berkeley, CA, USA, 533--549. http://dl.acm.org/citation. cfm?id=3026877.3026919Google ScholarGoogle Scholar
  43. Loc N. Huynh, Youngki Lee, and Rajesh Krishna Balan. 2017. DeepMon: Mobile GPU-based Deep Learning Framework for Continuous Vision Applications. In Proceedings of the 15th Annual International Conference on Mobile Systems, Applications, and Services (MobiSys '17). ACM, New York, NY, USA, 82--95. https://doi.org/10.1145/3081333.3081360Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Forrest N. Iandola, Matthew W. Moskewicz, Khalid Ashraf, Song Han, William J. Dally, and Kurt Keutzer. 2016. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <1MB model size. CoRR abs/1602.07360 (2016). arXiv:1602.07360 http://arxiv.org/abs/1602. 07360Google ScholarGoogle Scholar
  45. Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. 2014. Speeding up Convolutional Neural Networks with Low Rank Expansions. In Proceedings of the British Machine Vision Conference (BMVC '14). BMVA Press, Nottingham, UK. https://doi.org/10.5244/C.28.88Google ScholarGoogle ScholarCross RefCross Ref
  46. Yujie Ji, Xinyang Zhang, Shouling Ji, Xiapu Luo, and Ting Wang. 2018. Model-Reuse Attacks on Deep Learning Systems. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security (CCS '18). ACM, New York, NY, USA, 349--363. https://doi. org/10.1145/3243734.3243757Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Yangqing Jia. 2014. Learning Semantic Image Representations at a Large Scale. Ph.D. Dissertation. University of California, Berkeley, USA. http://www.escholarship.org/uc/item/64c2v6snGoogle ScholarGoogle Scholar
  48. Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Girshick, Sergio Guadarrama, and Trevor Darrell. 2014. Caffe: Convolutional Architecture for Fast Feature Embedding. In Proceedings of the 22Nd ACM International Conference on Multimedia (MM '14). ACM, New York, NY, USA, 675--678. https://doi.org/10.1145/ 2647868.2654889Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Yong-Deok Kim, Eunhyeok Park, Sungjoo Yoo, Taelim Choi, Lu Yang, and Dongjun Shin. 2015. Compression of Deep Convolutional Neural Networks for Fast and Low Power Mobile Applications. CoRR abs/1511.06530 (2015). arXiv:1511.06530 http://arxiv.org/abs/1511. 06530Google ScholarGoogle Scholar
  50. Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet Classification with Deep Convolutional Neural Networks. In Advances in Neural Information Processing Systems 25 (NIPS '12). Curran Associates, Inc., Lake Tahoe, Nevada, USA, 1106-- 1114. http://papers.nips.cc/paper/4824-imagenet-classification-withdeep- convolutional-neural-networksGoogle ScholarGoogle ScholarDigital LibraryDigital Library
  51. Nicholas D. Lane, Sourav Bhattacharya, Petko Georgiev, Claudio Forlivesi, Lei Jiao, Lorena Qendro, and Fahim Kawsar. 2016. DeepX: A Software Accelerator for Low-power Deep Learning Inference on Mobile Devices. In Proceedings of the 15th International Conference on Information Processing in Sensor Networks (IPSN '16). IEEE Press, Piscataway, NJ, USA, Article 23, 12 pages. http://dl.acm.org/citation.cfm? id=2959355.2959378Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Andrew Lavin and Scott Gray. 2016. Fast Algorithms for Convolutional Neural Networks. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR '16). Las Vegas, NV, USA, 4013--4021. https: //doi.org/10.1109/CVPR.2016.435Google ScholarGoogle Scholar
  53. Kristen LeFevre, David J. DeWitt, and Raghu Ramakrishnan. 2005. Incognito: Efficient Full-domain K-anonymity. In Proceedings of the 2005 ACM SIGMOD International Conference on Management of Data (SIGMOD '05). ACM, New York, NY, USA, 49--60. https://doi.org/10. 1145/1066157.1066164Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Meng Li, Liangzhen Lai, Naveen Suda, Vikas Chandra, and David Z. Pan. 2017. PrivyNet: A Flexible Framework for Privacy-Preserving Deep Neural Network Training with A Fine-Grained Privacy Control. CoRR abs/1709.06161 (2017). arXiv:1709.06161 http://arxiv.org/abs/ 1709.06161Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Sinisa Matetic, Mansoor Ahmed, Kari Kostiainen, Aritra Dhar, David M. Sommer, Arthur Gervais, Ari Juels, and Srdjan Capkun. 2017. ROTE: Rollback Protection for Trusted Execution. In 26th USENIX Security Symposium (USENIX Security '17). USENIX Association, Vancouver, BC, 1289--1306. https://www.usenix.org/conference/usenixsecurity17/ technical-sessions/presentation/mateticGoogle ScholarGoogle Scholar
  56. Olga Ohrimenko, Felix Schuster, Cedric Fournet, Aastha Mehta, Sebastian Nowozin, Kapil Vaswani, and Manuel Costa. 2016. Oblivious Multi- Party Machine Learning on Trusted Processors. In 25th USENIX Security Symposium (USENIX Security '16). USENIX Association, Austin, TX, 619--636. https://www.usenix.org/conference/usenixsecurity16/ technical-sessions/presentation/ohrimenkoGoogle ScholarGoogle Scholar
  57. Oleksii Oleksenko, Bohdan Trach, Robert Krahn, Mark Silberstein, and Christof Fetzer. 2018. Varys: Protecting SGX Enclaves from Practical Side-Channel Attacks. In 2018 USENIX Annual Technical Conference (ATC '18). USENIX Association, Boston, MA, 227--240. https://www. usenix.org/conference/atc18/presentation/oleksenkoGoogle ScholarGoogle Scholar
  58. Maxime Oquab, Léon Bottou, Ivan Laptev, and Josef Sivic. 2014. Learning and Transferring Mid-level Image Representations Using Convolutional Neural Networks. In 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR '14). Columbus, OH, USA, 1717--1724. https://doi.org/10.1109/CVPR.2014.222Google ScholarGoogle Scholar
  59. Seyed Ali Ossia, Ali Shahin Shamsabadi, Ali Taheri, Kleomenis Katevas, Hamid R. Rabiee, Nicholas D. Lane, and Hamed Haddadi. 2017. Privacy- Preserving Deep Inference for Rich User Data on The Cloud. CoRR abs/1710.01727 (2017). arXiv:1710.01727 http://arxiv.org/abs/1710. 01727Google ScholarGoogle Scholar
  60. Seyed Ali Ossia, Ali Shahin Shamsabadi, Ali Taheri, Hamid R. Rabiee, Nicholas D. Lane, and Hamed Haddadi. 2017. A Hybrid Deep Learning Architecture for Privacy-Preserving Mobile Analytics. CoRR abs/1703.02952 (2017). arXiv:1703.02952 http://arxiv.org/abs/1703. 02952Google ScholarGoogle Scholar
  61. Antonis Papadimitriou, Ranjita Bhagwan, Nishanth Chandran, Ramachandran Ramjee, Andreas Haeberlen, Harmeet Singh, Abhishek Modi, and Saikrishna Badrinarayanan. 2016. Big Data Analytics over Encrypted Datasets with Seabed. In Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation (OSDI'16). USENIX Association, Berkeley, CA, USA, 587--602. http://dl.acm.org/citation.cfm?id=3026877.3026922Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. 2016. XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks. In Computer Vision - ECCV 2016 - 14th European Conference, Amsterdam, The Netherlands. Springer International Publishing, Cham, 525--542. https://doi.org/10.1007/978--3--319- 46493-0_32Google ScholarGoogle Scholar
  63. Joseph Redmon, Santosh Kumar Divvala, Ross B. Girshick, and Ali Farhadi. 2016. You Only Look Once: Unified, Real-Time Object Detection. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR '16). Las Vegas, NV, USA, 779--788. https://doi.org/10.1109/ CVPR.2016.91Google ScholarGoogle ScholarCross RefCross Ref
  64. Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. 2015. ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision 115, 3 (2015), 211--252. https://doi.org/10.1007/s11263- 015-0816-yGoogle ScholarGoogle ScholarDigital LibraryDigital Library
  65. Mark Sandler, Andrew G. Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. 2018. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In 2018 IEEE Conference on Computer Vision and Pattern Recognition (CVPR '18). Salt Lake City, UT, USA, 4510-- 4520. http://openaccess.thecvf.com/content_cvpr_2018/html/Sandler_ MobileNetV2_Inverted_Residuals_CVPR_2018_paper.htmlGoogle ScholarGoogle ScholarCross RefCross Ref
  66. Boris Schäling. 2011. The boost C++ libraries. Boris Schäling.Google ScholarGoogle Scholar
  67. Karen Simonyan and Andrew Zisserman. 2014. Very Deep Convolutional Networks for Large-Scale Image Recognition. CoRR abs/1409.1556 (2014). arXiv:1409.1556 http://arxiv.org/abs/1409.1556Google ScholarGoogle Scholar
  68. Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. 2015. Going deeper with convolutions. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR '15). Boston, MA, USA, 1--9. https://doi.org/10.1109/CVPR.2015.7298594Google ScholarGoogle ScholarCross RefCross Ref
  69. Cheng Tai, Tong Xiao, Xiaogang Wang, and Weinan E. 2015. Convolutional neural networks with low-rank regularization. CoRR abs/1511.06067 (2015). arXiv:1511.06067 http://arxiv.org/abs/1511. 06067Google ScholarGoogle Scholar
  70. Shruti Tople, Karan Grover, Shweta Shinde, Ranjita Bhagwan, and Ramachandran Ramjee. 2018. Privado: Practical and Secure DNN Inference. CoRR abs/1810.00602 (2018). arXiv:1810.00602 http://arxiv. org/abs/1810.00602Google ScholarGoogle Scholar
  71. Florian Tramèr and Dan Boneh. 2018. Slalom: Fast, Verifiable and Private Execution of Neural Networks in Trusted Hardware. CoRR abs/1806.03287 (2018). arXiv:1806.03287 http://arxiv.org/abs/1806. 03287Google ScholarGoogle Scholar
  72. Stavros Volos, Kapil Vaswani, and Rodrigo Bruno. 2018. Graviton: Trusted Execution Environments on GPUs. In Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation (OSDI'18). USENIX Association, Berkeley, CA, USA, 681--696. http: //dl.acm.org/citation.cfm?id=3291168.3291219Google ScholarGoogle Scholar
  73. Endong Wang, Qing Zhang, Bo Shen, Guangyong Zhang, Xiaowei Lu, Qing Wu, and Yajuan Wang. 2014. Intel math kernel library. In High- Performance Computing on the Intel® Xeon Phi?. Springer, 167--188.Google ScholarGoogle Scholar
  74. Qian Wang, Xianyi Zhang, Yunquan Zhang, and Qing Yi. 2013. AUGEM: Automatically Generate High Performance Dense Linear Algebra Kernels on x86 CPUs. In Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis (SC '13). ACM, New York, NY, USA, Article 25, 12 pages. https://doi.org/10.1145/2503210.2503219Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yinqian Zhang, XiaoFeng Wang, Vincent Bindschaedler, Haixu Tang, and Carl A. Gunter. 2017. Leaky Cauldron on the Dark Land: Understanding Memory Side- Channel Hazards in SGX. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security (CCS '17).ACM, New York, NY, USA, 2421--2434. https://doi.org/10.1145/3133956.3134038Google ScholarGoogle Scholar
  76. NicoWeichbrodt, Pierre-Louis Aublin, and Rüdiger Kapitza. 2018. Sgxperf: A Performance Analysis Tool for Intel SGX Enclaves. In Proceedings of the 19th International Middleware Conference (Middleware '18). ACM, New York, NY, USA, 201--213. https://doi.org/10.1145/3274808. 3274824Google ScholarGoogle Scholar
  77. Jiaxiang Wu, Cong Leng, Yuhang Wang, Qinghao Hu, and Jian Cheng. 2016. Quantized Convolutional Neural Networks for Mobile Devices. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR '16). Las Vegas, NV, USA, 4820--4828. https://doi.org/10.1109/ CVPR.2016.521Google ScholarGoogle Scholar
  78. Wayne Xiong, Lingfeng Wu, Fil Alleva, Jasha Droppo, Xuedong Huang, and Andreas Stolcke. 2017. The Microsoft 2017 Conversational Speech Recognition System [Technical Report]. (August 2017). https://www.microsoft.com/en-us/research/publication/ microsoft-2017-conversational-speech-recognition-system/Google ScholarGoogle Scholar
  79. Mengwei Xu, Jiawei Liu, Yuanqiang Liu, Felix Xiaozhu Lin, Yunxin Liu, and Xuanzhe Liu. 2019. A First Look at Deep Learning Apps on Smartphones. In The World Wide Web Conference (WWW '19). ACM, New York, NY, USA, 2125--2136. https://doi.org/10.1145/3308558.3313591Google ScholarGoogle ScholarDigital LibraryDigital Library
  80. Mengwei Xu, Mengze Zhu, Yunxin Liu, Felix Xiaozhu Lin, and Xuanzhe Liu. 2018. DeepCache: Principled Cache for Mobile Deep Vision. In Proceedings of the 24th Annual International Conference on Mobile Computing and Networking (MobiCom '18). ACM, New York, NY, USA, 129--144. https://doi.org/10.1145/3241539.3241563Google ScholarGoogle ScholarDigital LibraryDigital Library
  81. Yuanzhong Xu, Weidong Cui, and Marcus Peinado. 2015. Controlled- Channel Attacks: Deterministic Side Channels for Untrusted Operating Systems. In 2015 IEEE Symposium on Security and Privacy (SP '15). San Jose, CA, USA, 640--656. https://doi.org/10.1109/SP.2015.45Google ScholarGoogle Scholar
  82. Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. 2014. How transferable are features in deep neural networks?. In Advances in Neural Information Processing Systems 27 (NIPS '14). Curran Associates, Inc., Montreal, Quebec, Canada, 3320--3328. http://papers.nips.cc/paper/ 5347-how-transferable-are-features-in-deep-neural-networksGoogle ScholarGoogle Scholar
  83. Xiao Zeng, Kai Cao, and Mi Zhang. 2017. MobileDeepPill: A Small- Footprint Mobile Deep Learning System for Recognizing Unconstrained Pill Images. In Proceedings of the 15th Annual International Conference on Mobile Systems, Applications, and Services (MobiSys '17). ACM, New York, NY, USA, 56--67. https://doi.org/10.1145/3081333. 3081336Google ScholarGoogle ScholarDigital LibraryDigital Library
  84. Jiyuan Zhang, Franz Franchetti, and Tze Meng Low. 2018. High Performance Zero-Memory Overhead Direct Convolutions. In Proceedings of the 35th International Conference on Machine Learning (ICML '18), Vol. 80. PMLR, Stockholmsmässan, Stockholm Sweden, 5776--5785. http://proceedings.mlr.press/v80/zhang18d.htmlGoogle ScholarGoogle Scholar

Index Terms

  1. Occlumency: Privacy-preserving Remote Deep-learning Inference Using SGX

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          MobiCom '19: The 25th Annual International Conference on Mobile Computing and Networking
          August 2019
          1017 pages
          ISBN:9781450361699
          DOI:10.1145/3300061

          Copyright © 2019 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 11 October 2019

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

          Acceptance Rates

          Overall Acceptance Rate440of2,972submissions,15%

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        ePub

        View this article in ePub.

        View ePub