skip to main content
10.1145/3292500.3330686acmconferencesArticle/Chapter ViewAbstractPublication PageskddConference Proceedingsconference-collections
research-article

IntentGC: A Scalable Graph Convolution Framework Fusing Heterogeneous Information for Recommendation

Published:25 July 2019Publication History

ABSTRACT

The remarkable progress of network embedding has led to state-of-the-art algorithms in recommendation. However, the sparsity of user-item interactions (i.e., explicit preferences) on websites remains a big challenge for predicting users' behaviors. Although research efforts have been made in utilizing some auxiliary information (e.g., social relations between users) to solve the problem, the existing rich heterogeneous auxiliary relationships are still not fully exploited. Moreover, previous works relied on linearly combined regularizers and suffered parameter tuning. In this work, we collect abundant relationships from common user behaviors and item information, and propose a novel framework named IntentGC to leverage both explicit preferences and heterogeneous relationships by graph convolutional networks. In addition to the capability of modeling heterogeneity, IntentGC can learn the importance of different relationships automatically by the neural model in a nonlinear sense. To apply IntentGC to web-scale applications, we design a faster graph convolutional model named IntentNet by avoiding unnecessary feature interactions. Empirical experiments on two large-scale real-world datasets and online A/B tests in Alibaba demonstrate the superiority of our method over state-of-the-art algorithms. We also release the source code of our work at https://github.com/peter14121/intentgc-models.

References

  1. Alexandr Andoni and Piotr Indyk. 2006. Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions. In Foundations of Computer Science, 2006. FOCS'06. 47th Annual IEEE Symposium on. IEEE, 459--468. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. 2013. Spectral networks and locally connected networks on graphs. arXiv preprint arXiv:1312.6203(2013).Google ScholarGoogle Scholar
  3. Shiyu Chang, Wei Han, Jiliang Tang, Guo-Jun Qi, Charu C Aggarwal, and Thomas S Huang. 2015. Heterogeneous network embedding via deep architectures. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 119--128. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Peng Cui, Xiao Wang, Jian Pei, and Wenwu Zhu. 2018. A survey on network embedding. IEEE Transactions on Knowledge and Data Engineering(2018).Google ScholarGoogle Scholar
  5. Yuxiao Dong, Nitesh V Chawla, and Ananthram Swami. 2017. metapath2vec: Scalable representation learning for heterogeneous networks. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 135--144. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Ali Mamdouh Elkahky, Yang Song, and Xiaodong He. 2015. A multi-view deep learning approach for cross domain user modeling in recommendation systems. In Proceedings of the 24th International Conference on World Wide Web. International World Wide Web Conferences Steering Committee, 278--288. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Ming Gao, Leihui Chen, Xiangnan He, and Aoying Zhou. 2018. BiNE: Bipartite Network Embedding. (2018).Google ScholarGoogle Scholar
  8. Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT Press. http://www.deeplearningbook.org. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Palash Goyal and Emilio Ferrara. 2018. Graph embedding techniques, applications,and performance: A survey. Knowledge-Based Systems 151 (2018), 78--94.Google ScholarGoogle ScholarCross RefCross Ref
  10. Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for networks. In Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 855--864. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation learning on large graphs. In Advances in Neural Information Processing Systems.1024--1034. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua. 2017. Neural collaborative filtering. In Proceedings of the 26th International Conference on World Wide Web. International World Wide Web Conferences Steering Committee, 173--182. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. T homas N Kipf and Max Welling. 2016. Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907(2016).Google ScholarGoogle Scholar
  14. Jianxun Lian, Xiaohuan Zhou, Fuzheng Zhang, Zhongxia Chen, Xing Xie, and Guangzhong Sun. 2018. xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems. arXiv preprint arXiv:1803.05170(2018).Google ScholarGoogle Scholar
  15. Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning of social representations. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 701--710. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Yu Shi, Qi Zhu, Fang Guo, Chao Zhang, and Jiawei Han. 2018. Easing Embedding Learning by Comprehensive Transcription of Heterogeneous Information Networks. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2190--2199. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. 2015. Line: Large-scale information network embedding. In Proceedings of the 24th International Conference on World Wide Web. International World Wide Web Conferences Steering Committee, 1067--1077. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint arXiv:1710.109031, 2 (2017).Google ScholarGoogle Scholar
  19. Daixin Wang, Peng Cui, and Wenwu Zhu. 2016. Structural deep network embedding. In Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 1225--1234. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Jizhe Wang, Pipei Huang, Huan Zhao, Zhibo Zhang, Binqiang Zhao, and Dik LunLee. 2018. Billion-scale Commodity Embedding for E-commerce Recommendation in Alibaba. arXiv preprint arXiv: 1803.02349 (2018).Google ScholarGoogle Scholar
  21. Zhenghua Xu, Cheng Chen, Thomas Lukasiewicz, Yishu Miao, and XiangwuMeng. 2016. Tag-aware personalized recommendation using a deep-semantic similarity model with negative sampling. In Proceedings of the 25th ACM International on Conference on Information and Knowledge Management. ACM, 1921--1924. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,and Jure Leskovec. 2018. Graph Convolutional Neural Networks for Web-Scale Recommender Systems. arXiv preprint arXiv:1806.01973(2018). Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Shuai Zhang, Lina Yao, and Aixin Sun. 2017. Deep learning based recommender system: A survey and new perspectives. arXiv preprint arXiv:1707.07435(2017). Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Yizhou Zhang, Yun Xiong, Xiangnan Kong, Shanshan Li, Jinhong Mi, and Yangyong Zhu. 2018. Deep Collective Classification in Heterogeneous Information Networks. In Proceedings of the 2018 World Wide Web Conference on World Wide Web. International World Wide Web Conferences Steering Committee, 399--408. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Dingyuan Zhu, Peng Cui, Daixin Wang, and Wenwu Zhu. 2018. Deep variational network embedding in wasserstein space. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2827--2836. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. IntentGC: A Scalable Graph Convolution Framework Fusing Heterogeneous Information for Recommendation

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        KDD '19: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
        July 2019
        3305 pages
        ISBN:9781450362016
        DOI:10.1145/3292500

        Copyright © 2019 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 25 July 2019

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        KDD '19 Paper Acceptance Rate110of1,200submissions,9%Overall Acceptance Rate1,133of8,635submissions,13%

        Upcoming Conference

        KDD '24

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader