skip to main content
10.1145/3330204.3330245acmotherconferencesArticle/Chapter ViewAbstractPublication PagessbsiConference Proceedingsconference-collections
research-article

Deep Neural Networks Applied to User Recognition Based on Keystroke Dynamics: Learning from Raw Data

Published:20 May 2019Publication History

ABSTRACT

Several studies have investigated how to use Machine Learning algorithms to recognize users based on keystroke dynamic. All those studies required Feature Engineering (FE), i.e., a process in which specialists choose what attributes should be considered for learning. However, this process is susceptible to problems such as original information loss or inappropriate attribute choices. Thus, the objective of this work is to demonstrate the hypothesis that user recognition algorithms applied to keystroke dynamics raw (original) data can perform better than the ones that depend on FE. Therefore, this work proposes a deep neural network named DRK. The proposed network contains layers that learn adequate data representations to perform user recognition based on keystroke dynamics raw data, avoiding FE. Experiments compared DRK with four other deep neural networks that use FE in four datasets with 280 users. The proposed network achieved better results in all datasets, showing strong evidence that the stated hypothesis is, in fact, valid.

References

  1. M. Ali, J. Monaco, C. Tappert, and M. Qiu. 2017. Keystroke Biometric Systems for User Authentication. Journal of Signal Processing Systems 86, 2 (mar 2017), 175--190. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. M. Antal and L. Nemes. 2016. The MOBIKEY keystroke dynamics password database: Benchmark results. In Advances in Intelligent Systems and Computing, Vol. 465. Springer, 35--46.Google ScholarGoogle Scholar
  3. M. Antal, L. Z. Szabó, and I. László. 2015. Keystroke dynamics on android platform. Procedia Technology 19 (2015), 820--826.Google ScholarGoogle ScholarCross RefCross Ref
  4. L. C. F. Araújo, L. H. R. Sucupira, M. G. Lizarraga, L. L. Ling, and J. B. T. Yabu-Uti. 2005. User authentication through typing biometrics features. IEEE transactions on signal processing 53, 2 (2005), 851--855. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. S. P. Banerjee and D. L. Woodard. 2012. Biometric authentication and identification using keystroke dynamics: A survey. Journal of Pattern Recognition Research 7, 1 (2012), 116--139.Google ScholarGoogle ScholarCross RefCross Ref
  6. R. Baskerville, F. Rowe, and F.-C. Wolff. 2012. Functionality vs. Security in IS: Tradeoff or equilibrium. In International Conference on Information Systems, ICIS 2012, Vol. 2. Association for Information Systems, 1210--1229.Google ScholarGoogle Scholar
  7. Y. Bengio, A. Courville, and P. Vincent. 2013. Representation learning: A review and new perspectives. IEEE Trans. Pattern Anal. and Mach. Intell. 35, 8 (2013), 1798--1828. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. H. Çeker and S. Upadhyaya. 2017. Sensitivity analysis in keystroke dynamics using convolutional neural networks. In 2017 IEEE Workshop on Information Forensics and Security (WIFS). 1--6.Google ScholarGoogle Scholar
  9. M. Cruz, J. Duarte, and R. Goldschmidt. 2017. Dinâmica da Digitação Aplicada à Autenticação Periódica de Usuários em Ambientes Virtuais de Aprendizagem. Revista Brasileira de Informática na Educação 2 (2017), 1--30.Google ScholarGoogle Scholar
  10. M. A. S. Cruz and R. R. Goldschmidt. 2018. Algoritmos de Aprendizado de Máquina Aplicados ao Reconhecimento de Usuário Baseado na Dinâmica da Digitação: Um Estudo Comparativo. SBSeg 2 (2018), 1--30.Google ScholarGoogle Scholar
  11. Y. Deng and Y. Zhong. 2013. Keystroke dynamics user authentication based on gaussian mixture model and deep belief nets. ISRN Signal Processing (2013), 1--30.Google ScholarGoogle Scholar
  12. M. El-Abed, M. Dafer, and R. E. Khayat. 2014. RHU Keystroke: A mobile-based benchmark for keystroke dynamics systems. In 2014 Int. Carnahan Conf. on Security Technology (ICCST). 1--4.Google ScholarGoogle Scholar
  13. K. Faceli, A. C. Lorena, J. Gama, and A. Carvalho. 2011. Inteligência Artificial: Uma abordagem de aprendizado de máquina. Vol. 2. LTC.Google ScholarGoogle Scholar
  14. F. Ghahramani and J. Wang. 2017. Adoption of an Authentication System: Is Security the Only Consideration?. In International Conference on Information Systems - ICIS. 1--20.Google ScholarGoogle Scholar
  15. R. Giot and et al. 2009. GREYC Keystroke: a Benchmark for Keystroke Dynamics Biometric Systems. IEEE Int. Conf. on Biometrics: Theory, Applications and Systems (BTAS 2009) (2009). Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. I. Goodfellow, Y. Bengio, and A. Courville. 2016. Deep Learning. MIT Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. K. He, X. Zhang, S. Ren, and J. Sun. 2015. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In Proc. of the IEEE Int. Conf. on computer vision. 1026--1034. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. G. E. Hinton, S. Osindero, and Y.-W. Teh. 2006. A fast learning algorithm for deep belief nets. Neural computation 18, 7 (2006), 1527--1554. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. S. Hochreiter and J. Schmidhuber. 1997. Long Short-Term Memory. Neural Computation 9, 8 (1997), 1735--1780. arXiv:1206.2944 Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. K. S. Killourhy and R. A. Maxion. 2009. Comparing anomaly-detection algorithms for keystroke dynamics. In Dependable Systems & Networks, 2009. DSN'09. IEEE/IFIP Int. Conf. on. 125--134.Google ScholarGoogle Scholar
  21. P. Kobojek and K. Saeed. 2016. Application of Recurrent Neural Networks for User Verification based on Keystroke Dynamics. Journal of Telecommunications and Information Technology 1, 3 (2016), 80.Google ScholarGoogle Scholar
  22. Y. Lecun, Y. Bengio, and G. Hinton. 2015. Deep learning. Nature 521, 7553 (2015), 436--444. arXiv:arXiv:1312.6184v5Google ScholarGoogle Scholar
  23. A. L. Maas, A. Y. Hannun, and A. Y. Ng. 2013. Rectifier nonlinearities improve neural network acoustic models. In Proc. icml, Vol. 30. 3.Google ScholarGoogle Scholar
  24. G. A. Mack and J. H. Skillings. 1980. A Friedman-Type Rank Test for Main Effects in a Two-Factor ANOVA. J. Amer. Statist. Assoc. 75, 372 (1980), 947--951.Google ScholarGoogle ScholarCross RefCross Ref
  25. S. Maheshwary, S. Ganguly, and V. Pudi. 2017. Deep secure: A fast and simple neural network based approach for user authentication and identification via keystroke dynamics. In IWAISe: First Int. Workshop on Artificial Intelligence in Security. 59.Google ScholarGoogle Scholar
  26. F. Monrose and A. D. Rubin. 2000. Keystroke dynamics as a biometric for authentication. Future Generation Computer Systems 16, 4 (2000), 351--359. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. P. H. Pisani and A. C. Lorena. 2013. A systematic review on keystroke dynamics. Journal of the Brazilian Computer Society 19, 4 (nov 2013), 573--587.Google ScholarGoogle ScholarCross RefCross Ref
  28. E. Prado and C. A. de Souza. 2014. Fundamentos de sistemas de informação. Vol. 1. Elsevier Brasil.Google ScholarGoogle Scholar
  29. F. Rosenblatt. 1962. Principles of Neurodynamics. Spartan Book, New York.Google ScholarGoogle Scholar
  30. S. Ruder. 2016. An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747 (2016).Google ScholarGoogle Scholar
  31. M. Sêmola. 2014. Gestão da segurança da informação. Vol. 2. Elsevier Brasil.Google ScholarGoogle Scholar
  32. N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. 2014. Dropout: a simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research 15, 1 (2014), 1929--1958. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. P. S. Teh, A. B. J. Teoh, and S. Yue. 2013. A survey of keystroke dynamics biometrics. The Scientific World Journal 2013 (2013), 1--30.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Deep Neural Networks Applied to User Recognition Based on Keystroke Dynamics: Learning from Raw Data

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Other conferences
        SBSI '19: Proceedings of the XV Brazilian Symposium on Information Systems
        May 2019
        623 pages
        ISBN:9781450372374
        DOI:10.1145/3330204

        Copyright © 2019 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 20 May 2019

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed limited

        Acceptance Rates

        Overall Acceptance Rate181of557submissions,32%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader