skip to main content
research-article
Open Access

A Monte Carlo framework for rendering speckle statistics in scattering media

Published:12 July 2019Publication History
Skip Abstract Section

Abstract

We present a Monte Carlo rendering framework for the physically-accurate simulation of speckle patterns arising from volumetric scattering of coherent waves. These noise-like patterns are characterized by strong statistical properties, such as the so-called memory effect. These properties are at the core of imaging techniques for applications as diverse as tissue imaging, motion tracking, and non-line-of-sight imaging. Our rendering framework can replicate these properties computationally, in a way that is orders of magnitude more efficient than alternatives based on directly solving the wave equations. At the core of our framework is a path-space formulation for the covariance of speckle patterns arising from a scattering volume, which we derive from first principles. We use this formulation to develop two Monte Carlo rendering algorithms, for computing speckle covariance as well as directly speckle fields. While approaches based on wave equation solvers require knowing the microscopic position of wavelength-sized scatterers, our approach takes as input only bulk parameters describing the statistical distribution of these scatterers inside a volume. We validate the accuracy of our framework by comparing against speckle patterns simulated using wave equation solvers, use it to simulate memory effect observations that were previously only possible through lab measurements, and demonstrate its applicability for computational imaging tasks.

Skip Supplemental Material Section

Supplemental Material

papers_171.mp4

mp4

263.1 MB

References

  1. Eric Akkermans and Gilles Montambaux. 2007. Mesoscopic Physics of Electrons and Photons. Cambridge University Press.Google ScholarGoogle Scholar
  2. M. Batarseh, S. Sukhov, Z. Shen, H. Gemar, R. Rezvani, and A. Dogariu. 2018. Passive sensing around the corner using spatial coherence. Nature Communications.Google ScholarGoogle Scholar
  3. Ibrahim Baydoun, Diego Baresch, Romain Pierrat, and Arnaud Derode. 2016. Radiative transfer of acoustic waves in continuous complex media: Beyond the Helmholtz equation. Physical Review E.Google ScholarGoogle Scholar
  4. Stephan Bergmann, Mahsa Mohammadikaji, Stephan Irgenfried, Heinz Worn, Jürgen Beyerer, and Carsten Dachsbacher. 2016. A Phenomenological Approach to Integrating Gaussian Beam Properties and Speckle into a Physically-Based Renderer. In Vision, Modeling & Visualization. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Richard Berkovits and Shechao Feng. 1994. Correlations in coherent multiple scattering. Physics Reports (1994).Google ScholarGoogle Scholar
  6. Bruce J Berne and Robert Pecora. 2000. Dynamic light scattering: with applications to chemistry, biology, and physics. Courier Corporation.Google ScholarGoogle Scholar
  7. Jacopo Bertolotti, Elbert G. van Putten, Christian Blum, Ad Lagendijk, Willem L. Vos, and Allard P. Mosk. 2012. Non-invasive imaging through opaque scattering layers. Nature 491(7423), 232.Google ScholarGoogle ScholarCross RefCross Ref
  8. Benedikt Bitterli, Srinath Ravichandran, Thomas Müller, Magnus Wrenninge, Jan Novák, Steve Marschner, and Wojciech Jarosz. 2018. A radiative transfer framework for non-exponential media. In SIGGRAPH Asia. ACM, 225. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. David A Boas and Arjun G. Yodh. 1997. Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation. J. Opt. Soc. Am. A.Google ScholarGoogle ScholarCross RefCross Ref
  10. Craig F. Bohren and Donald R. Huffman. 1983. Absorption and scattering of light by small particle. John Wiley & Sons.Google ScholarGoogle Scholar
  11. Tom Cuypers, Tom Haber, Philippe Bekaert, Se Baek Oh, and Ramesh Raskar. 2012. Reflectance Model for Diffraction. ACM Trans. Graph. 31, 5, Article 122, 11 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Eugene d'Eon. 2018a. A Reciprocal Formulation of Non-Exponential Radiative Transfer. 2: Monte Carlo Estimation and Diffusion Approximation. arXiv preprint arXiv:1809.05881.Google ScholarGoogle Scholar
  13. Eugene d'Eon. 2018b. A reciprocal formulation of non-exponential radiative transfer with uncorrelated sources, detectors and boundaries. 1: Sketch and motivation. arXiv preprint arXiv:1803.03259.Google ScholarGoogle Scholar
  14. Ronald L. Dougherty, Bruce J. Ackerson, N.M. Reguigui, F. Dorri-Nowkoorani, and Ulf Nobbmann. 1994. Correlation transfer: Development and application. J. of Quantitative Spectroscopy and Radiative Transfer.Google ScholarGoogle Scholar
  15. Donald D. Duncan and Sean J. Kirkpatrick. 2008. Can laser speckle flowmetry be made a quantitative tool? J. Opt. Soc. Am. A 25, 8, 2088--2094.Google ScholarGoogle ScholarCross RefCross Ref
  16. Turgut Durduran, Regine Choe, Wesley B. Baker, and Arjun G. Yodh. 2010. Diffuse optics for tissue monitoring and tomography. Reports on Progress in Physics.Google ScholarGoogle Scholar
  17. Philip Dutré, Kavita Bala, and Philippe Bekaert. 2006. Advanced global illumination. AK Peters, Ltd. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Robert Erf. 1978. Speckle Metrology. Elsevier.Google ScholarGoogle Scholar
  19. Shechao Feng, Charles Kane, Patrick A Lee, and A Douglas Stone. 1988. Correlations and fluctuations of coherent wave transmission through disordered media. Physical review letters 61, 7, 834.Google ScholarGoogle Scholar
  20. James R. Fienup. 1982. Phase retrieval algorithms: a comparison. Appl. Opt. 21, 15, 2758--2769.Google ScholarGoogle ScholarCross RefCross Ref
  21. Isaac Freund. 1990. Looking through walls and around corners. Physica: Statistical Mechanics and its App.Google ScholarGoogle Scholar
  22. Isaac Freund and Danny Eliyahu. 1992. Surface correlations in multiple-scattering media. Phys Rev A (1992).Google ScholarGoogle Scholar
  23. Isaac Freund, Michael Rosenbluh, and Shechao. Feng. 1988. Memory Effects in Propagation of Optical Waves through Disordered Media. Phys. Rev. Lett. 61, 2328--2331. Issue 20.Google ScholarGoogle ScholarCross RefCross Ref
  24. David L. Fried. 1982. Anisoplanatism in adaptive optics. J. Opt. Soc. Am. 72, 1, 52--61.Google ScholarGoogle ScholarCross RefCross Ref
  25. Jeppe Revall Frisvad, Niels Jørgen Christensen, and Henrik Wann Jensen. 2007. Computing the scattering properties of participating media using Lorenz-Mie theory. SIGGRAPH.Google ScholarGoogle Scholar
  26. Ioannis Gkioulekas, Anat Levin, and Todd Zickler. 2016. An Evaluation of Computational Imaging Techniques for Heterogeneous Inverse Scattering.Google ScholarGoogle Scholar
  27. I. Gkioulekas, S. Zhao, K. Bala, T. Zickler, and A. Levin. 2013. Inverse Volume Rendering with Material Dictionaries. ACM Transactions on Graphics (Proc. ACM SIGGRAPH Asia) (2013). Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. W. I. Goldburg. 1999. Dynamic light scattering. American Journal of Physics (1999).Google ScholarGoogle Scholar
  29. Goodman. 2007. Speckle Phenomena in Optics: Theory and Applications. Roberts and Company Pub.Google ScholarGoogle Scholar
  30. Vadim Holodovski, Yoav Y. Schechner, Anat Levin, Aviad Levis, and Amit Aides. 2016. In-situ multi-view multi-scattering stochastic tomography. In ICCP.Google ScholarGoogle Scholar
  31. Y.A. Ilyushin. 2012. Coherent backscattering enhancement in highly anisotropically scattering media: Numerical solution. Journal of Quantitative Spectroscopy and Radiative Transfer (2012).Google ScholarGoogle Scholar
  32. Akira Ishimaru. 1999. Wave propagation and scattering in random media. Vol. 12. John Wiley & Sons.Google ScholarGoogle Scholar
  33. P. Jacquot and J. M. Fournier. 2000. Interferometry in Speckle Light. Springer.Google ScholarGoogle Scholar
  34. Pierre Jacquot and Pramod K. Rastogi. 1979. Speckle motions induced by rigid-body movements in free-space geometry: an explicit investigation and extension to new cases. Appl. Opt. (1979).Google ScholarGoogle Scholar
  35. Wenzel Jakob. 2010. Mitsuba renderer. http://www.mitsuba-renderer.org.Google ScholarGoogle Scholar
  36. Wenzel Jakob, Adam Arbree, Jonathan T Moon, Kavita Bala, and Steve Marschner. 2010. A radiative transfer framework for rendering materials with anisotropic structure. In ACM Transactions on Graphics (TOG), Vol. 29. ACM, 53. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. M. L. Jakobsen, H. T. Yura, and S. G. Hanson. 2012. Spatial filtering velocimetry of objective speckles for measuring out-of-plane motion. Appl. Opt. (2012).Google ScholarGoogle Scholar
  38. Adrian Jarabo, Carlos Aliaga, and Diego Gutierrez. 2018. A Radiative Transfer Framework for Spatially-Correlated Materials. ACM Transactions on Graphics 37, 4 (2018). Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Adrian Jarabo and Victor Arellano. 2018. Bidirectional rendering of vector light transport. In Computer Graphics Forum, Vol. 37. Wiley Online Library, 96--105. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. O. Katz, P. Heidmann, M. Fink, and S. Gigan. 2014. Non-invasive single-shot imaging through scattering layers and around corners via speckle correlation. Nat. Photonics (2014).Google ScholarGoogle Scholar
  41. O. Katz, E. Small, and Y. Silberberg. 2012. Looking around corners and through thin turbid layers in real time with scattered incoherent light. Nature (2012).Google ScholarGoogle Scholar
  42. Guillermo H. Kaufmann. 2011. Advances in Speckle Metrology and Related Techniques. Wiley.Google ScholarGoogle Scholar
  43. Peter Kutz, Ralf Habel, Yining Karl Li, and Jan Novak. 2017. Spectral and decomposition tracking for rendering heterogeneous volumes. ACM Transactions on Graphics (TOG) 36, 4 (2017), 111. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Aviad Levis, Yoav Y. Schechner, Amit Aides, and Anthony B. Davis. 2015. Airborne three-dimensional cloud tomography. In ICCV. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. J. H. Li and A. Z. Genack. 1994. Correlation in laser speckle. Phys. Rev. E 49 (May 1994), 4530--4533. Issue 5.Google ScholarGoogle Scholar
  46. Qiang Lu, Xiaosong Gan, Min Gu, and Qingming Luo. 2004. Monte Carlo modeling of optical coherence tomography imaging through turbid media. Applied optics 43, 8 (2004), 1628--1637.Google ScholarGoogle Scholar
  47. Johannes Meng, Marios Papas, Ralf Habel, Carsten Dachsbacher, Steve Marschner, Markus H Gross, and Wojciech Jarosz. 2015. Multi-scale modeling and rendering of granular materials. ACM Trans. Graph. 34, 4 (2015), 49--1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. M. Mesradi, A. Genoux, V. Cuplov, D. Abi Haidar, S. Jan, I. Buvat, and F. Pain. 2013. Experimental and analytical comparative study of optical coefficient of fresh and frozen rat tissues. Journal of Biomedical Optics (Nov. 2013).Google ScholarGoogle ScholarCross RefCross Ref
  49. M.I. Mishchenko, L.D. Travis, and A.A. Lacis. 2006. Multiple scattering of light by particles: radiative transfer and coherent backscattering. Cambridge Univ Pr.Google ScholarGoogle Scholar
  50. Jonathan T Moon, Bruce Walter, and Stephen R Marschner. 2007. Rendering discrete random media using precomputed scattering solutions. In Proceedings of the 18th Eurographics conference on Rendering Techniques. Eurographics Association, 231--242. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Allard P. Mosk, Ad Lagendijk, Geoffroy Lerosey, and Mathias Fink. 2013. Controlling waves in space and time for imaging and focusing in complex media. Nat. Photonics (2013).Google ScholarGoogle Scholar
  52. Thomas Müller, Marios Papas, Markus H Gross, Wojciech Jarosz, and Jan Novák. 2016. Efficient rendering of heterogeneous polydisperse granular media. ACM Trans. Graph. 35, 6 (2016), 168--1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. S.G. Narasimhan, M. Gupta, C. Donner, R. Ramamoorthi, S.K. Nayar, and H.W.Jensen. 2006. Acquiring scattering properties of participating media by dilution. ACM Trans. Graph. 25, 3 (2006). Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Micha Nixon, Ori Katz, Eran Small, Yaron Bromberg, Asher A. Friesem, Yaron Silberberg, and Nir Davidson. 2013. Real-time wavefront shaping through scattering media by all-optical feedback. Nat. Photonics (2013).Google ScholarGoogle Scholar
  55. Jan Novak, Iliyan Georgiev, Johannes Hanika, and Wojciech Jarosz. 2018. Monte Carlo Methods for Volumetric Light Transport Simulation. Computer Graphics Forum (2018).Google ScholarGoogle Scholar
  56. Gerwin Osnabrugge, Roarke Horstmeyer, Ioannis N Papadopoulos, Benjamin Judkewitz, and Ivo M Vellekoop. 2017. Generalized optical memory effect. Optica 4, 8 (2017), 886--892.Google ScholarGoogle ScholarCross RefCross Ref
  57. Yingtian Pan, Reginald Birngruber, Jürgen Rosperich, and Ralf Engelhardt. 1995. Low-coherence optical tomography in turbid tissue: theoretical analysis. Applied optics 34, 28 (1995), 6564--6574.Google ScholarGoogle Scholar
  58. Matt Pharr, Wenzel Jakob, and Greg Humphreys. 2016. Physically based rendering: From theory to implementation. Morgan Kaufmann. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Romain Pierrat, Jean-Jacques Greffet, Rémi Carminati, and Rachid Elaloufi. 2005. Spatial coherence in strongly scattering media. J. Opt. Soc. Am. A 22, 11 (Nov 2005), 2329--2337.Google ScholarGoogle ScholarCross RefCross Ref
  60. DJ Pine, DA Weitz, PM Chaikin, and E Herbolzheimer. 1988. Diffusing wave spectroscopy. Physical review letters 60, 12 (1988), 1134.Google ScholarGoogle Scholar
  61. John Sawicki, Nikolas Kastor, and Min Xu. 2008. Electric field Monte Carlo simulation of coherent backscattering of polarized light by a turbid medium containing Mie scatterers. Opt. Express 16, 8 (Apr 2008), 5728--5738.Google ScholarGoogle ScholarCross RefCross Ref
  62. Joseph M Schmitt and A Knüttel. 1997. Model of optical coherence tomography of heterogeneous tissue. JOSA A 14, 6 (1997), 1231--1242.Google ScholarGoogle ScholarCross RefCross Ref
  63. Schott, Bertolotti, Léger, Bourdieu, and Gigan. 2015. Characterization of the angular memory effect of scattered light in biological tissues. Opt. Express (2015).Google ScholarGoogle Scholar
  64. Zhean Shen, Sergey Sukhov, and Aristide Dogariu. 2017. Monte Carlo method to model optical coherence propagation in random media. J. Opt. Soc. Am. A 34, 12 (Dec 2017), 2189--2193.Google ScholarGoogle ScholarCross RefCross Ref
  65. Brandon M. Smith, Pratham Desai, Vishal Agarwal, and Mohit Gupta. 2017. CoLux: Multi-object 3D Micro-motion Analysis Using Speckle Imaging. ACM Trans. Graph. (2017). Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. J. Stam. 1999. Diffraction shaders. In SIGGRAPH. Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. Bo Sun, Ravi Ramamoorthi, Srinivasa G Narasimhan, and Shree K Nayar. 2005. A practical analytic single scattering model for real time rendering. In ACM Transactions on Graphics (TOG), Vol. 24. ACM, 1040--1049. Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. F. Sur, B. Blaysat, and M. Grediac. 2018. Rendering deformed speckle images with a Boolean model. Journal of Mathematical Imaging and Vision (2018). Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. B. Thierry, X. Antoine, C. Chniti, and H. Alzubaidi. 2015. μ-diff: An open-source Matlab toolbox for computing multiple scattering problems by disks. Computer Physics Communications 192 (2015), 348 -- 362.Google ScholarGoogle ScholarCross RefCross Ref
  70. B. E. Treeby and B. T. Cox. 2010. k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave-fields,. J. Biomed. Opt. (2010).Google ScholarGoogle Scholar
  71. V. Twersky. 1964. On propagation in random media of discrete scatterers. Am. Math. Sot. Symp. Stochastic Processes in Mathematical Physics and Engineering, Vol. 16, p. 84 (1964).Google ScholarGoogle ScholarCross RefCross Ref
  72. E. Veach. 1997. Robust Monte Carlo methods for light transport simulation. Ph.D. Dissertation. PhD thesis, Stanford University. Google ScholarGoogle ScholarDigital LibraryDigital Library
  73. Eric Veach and Leonidas Guibas. 1995a. Bidirectional estimators for light transport. In Photorealistic Rendering Techniques. Springer, 145--167.Google ScholarGoogle Scholar
  74. Eric Veach and Leonidas J Guibas. 1995b. Optimally combining sampling techniques for Monte Carlo rendering. In Proceedings of the 22nd annual conference on Computer graphics and interactive techniques. ACM, 419--428. Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. Eric Veach and Leonidas J Guibas. 1997. Metropolis light transport. In Proceedings of the 24th annual conference on Computer graphics and interactive techniques. ACM Press/Addison-Wesley Publishing Co., 65--76. Google ScholarGoogle ScholarDigital LibraryDigital Library
  76. Ivo M. Vellekoop and Christof M. Aegerter. 2010. Scattered light fluorescence microscopy: imaging through turbid layers. Opt. Lett. 35, 8 (Apr 2010), 1245--1247.Google ScholarGoogle ScholarCross RefCross Ref
  77. Bruce Walter, Shuang Zhao, Nicolas Holzschuch, and Kavita Bala. 2009. Single scattering in refractive media with triangle mesh boundaries. In ACM Transactions on Graphics (TOG), Vol. 28. ACM, 92. Google ScholarGoogle ScholarDigital LibraryDigital Library
  78. Sebastian Werner, Zdravko Velinov, Wenzel Jakob, and Matthias B. Hullin. 2017. Scratch Iridescence: Wave-Optical Rendering of Diffractive Surface Structure. ACM SIGGRAPH Asia (2017). Google ScholarGoogle ScholarDigital LibraryDigital Library
  79. Douglas R Wyman, Michael S Patterson, and Brian C Wilson. 1989. Similarity relations for anisotropic scattering in Monte Carlo simulations of deeply penetrating neutral particles. J. Comput. Phys. 81, 1 (1989), 137--150. Google ScholarGoogle ScholarDigital LibraryDigital Library
  80. Min Xu. 2004. Electric field Monte Carlo simulation of polarized light propagation in turbid media. Opt. Express 12, 26 (Dec 2004), 6530--6539.Google ScholarGoogle ScholarCross RefCross Ref
  81. Ling-Qi Yan, Miloš Hašan, Bruce Walter, Steve Marschner, and Ravi Ramamoorthi. 2018. Rendering specular microgeometry with wave optics. ACM Transactions on Graphics (TOG) 37, 4 (2018), 75. Google ScholarGoogle ScholarDigital LibraryDigital Library
  82. Xin Yang, Ye Pu, and Demetri Psaltis. 2014. Imaging blood cells through scattering biological tissue using speckle scanning microscopy. Opt. Express 22, 3 (Feb 2014), 3405--3413.Google ScholarGoogle Scholar
  83. K. Yee. 1966. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media. EEE Trans. on Antennas and Propagation (1966).Google ScholarGoogle Scholar
  84. Hengchin Yeh, Ravish Mehra, Zhimin Ren, Lakulish Antani, Dinesh Manocha, and Ming Lin. 2013. Wave-ray Coupling for Interactive Sound Propagation in Large Complex Scenes. ACM Trans. Graph. (2013). Google ScholarGoogle ScholarDigital LibraryDigital Library
  85. Shuang Zhao, Ravi Ramamoorthi, and Kavita Bala. 2014. High-order similarity relations in radiative transfer. ACM Transactions on Graphics (TOG) 33, 4 (2014), 104. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. A Monte Carlo framework for rendering speckle statistics in scattering media

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 38, Issue 4
      August 2019
      1480 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3306346
      Issue’s Table of Contents

      Copyright © 2019 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 12 July 2019
      Published in tog Volume 38, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader