skip to main content
research-article

Nonhomogeneous Place-dependent Markov Chains, Unsynchronised AIMD, and Optimisation

Published:07 June 2019Publication History
Skip Abstract Section

Abstract

A stochastic algorithm is presented for a class of optimisation problems that arise when a group of agents compete to share a single constrained resource in an optimal manner. The approach uses intermittent single-bit feedback, which indicates a constraint violation and does not require inter-agent communication. The algorithm is based on a positive matrix model of AIMD, which is extended to the nonhomogeneous Markovian case. The key feature is the assignment of back-off probabilities to the individual agents as a function of the past average access to the resource. This leads to a nonhomogeneous Markov chain in an extended state space, and we show almost sure convergence of the average access to the social optimum.

References

  1. D. Angeli and P.-A. Kountouriotis. 2012. A stochastic approach to dynamic-demand refrigerator control. IEEE Trans. Control Syst. Technol. 20, 3 (2012), 581--592.Google ScholarGoogle ScholarCross RefCross Ref
  2. M. F. Barnsley, S. G. Demko, J. H. Elton, and J. S. Geronimo. 1988. Invariant measures for Markov processes arising from iterated function systems with place-dependent probabilities. Annales de l’Institut Henri Poincaré (B) Probabilités et Statistiques 24, 3 (1988), 367--394.Google ScholarGoogle Scholar
  3. S. Bhandarkar, A. L. N. Reddy, Y. Zhang, and D. Loguinov. 2007. Emulating AQM from end hosts. SIGCOMM Comput. Commun. Rev. 37, 4 (2007), 349--360. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. P. Bianchi, G. Fort, and W. Hachem. 2013. Performance of a distributed stochastic approximation algorithm. IEEE Trans. Info. Theory 59, 11 (2013), 7405--7418. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. B. Biegel, P. Andersen, T. S. Pedersen, K. M. Nielsen, J. Stoustrup, and L. H. Hansen. 2013. Smart grid dispatch strategy for ON/OFF demand-side devices. In Proceedings of the European Control Conference (ECC’13). 2541--2548.Google ScholarGoogle Scholar
  6. P. Billingsley. 1995. Probability and Measure, 3rd ed. John Wiley 8 Sons, Hoboken, NJ.Google ScholarGoogle Scholar
  7. V. S. Borkar. 2008. Stochastic Approximation: A Dynamical Systems Viewpoint. Cambridge University Press, Cambridge, UK.Google ScholarGoogle ScholarCross RefCross Ref
  8. S. Boyd and L. Vandenberghe. 2004. Convex Optimization. Cambridge University Press, New York, NY. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. L. S. Brakmo, S. W. O'Malley, and L. L. Peterson. 1994. TCP Vegas: New techniques for congestion detection and avoidance. SIGCOMM Comput. Commun. Rev. 24, 4 (1994), 24--35. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. A. Brooks, E. Lu, D. Reicher, C. Spirakis, and B. Weihl. 2010. Demand dispatch. IEEE Power Energy Mag. 8, 3 (2010), 20--29.Google ScholarGoogle ScholarCross RefCross Ref
  11. Ł. Budzisz, R. Stanojević, A. Schlote, F. Baker, and R. Shorten. 2011. On the fair coexistence of loss-and delay-based TCP. IEEE/ACM Trans. Netw. 19, 6 (2011), 1811--1824. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. M. Chiang, S. Low, R. Calderbank, and J. Doyle. 2007. Layering as optimization decomposition: A mathematical theory of network architectures. Proc. IEEE 95, 1 (2007), 255--312.Google ScholarGoogle ScholarCross RefCross Ref
  13. K. Clement, E. Haesen, and J. Driesen. 2009. Coordinated charging of multiple plug-in hybrid electric vehicles in residential distribution grids. In Proceedings of the IEEE/PES Power Systems Conference and Exposition (PSCE’09). 1--7.Google ScholarGoogle Scholar
  14. K. Clement-Nyns, E. Haesen, and J. Driesen. 2010. The impact of charging plug-in hybrid electric vehicles on a residential distribution grid. IEEE Trans. Power Syst. 25, 1 (2010), 371--380.Google ScholarGoogle ScholarCross RefCross Ref
  15. M. Corless, C. King, R. Shorten, and F. Wirth. 2016. AIMD Dynamics and Distributed Resource Allocation. Number 29 in Advances in Design and Control. SIAM, Philadelphia, PA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. E. Crisostomi, M. Liu, M. Raugi, and R. Shorten. 2014. Stochastic distributed algorithms for power generation in a microgrid. IEEE Trans. Smart Grid 5, 4 (2014), 2145--2154.Google ScholarGoogle ScholarCross RefCross Ref
  17. E. Crisostomi, R. Shorten, S. Stüdli, and F. Wirth. 2017. Electric and Plug-in Hybrid Vehicle Networks: Optimization and Control. CRC Press, 2017.Google ScholarGoogle Scholar
  18. S. Deilami, A. S. Masoum, P. S. Moses, and M. A. S. Masoum. 2011. Real-time coordination of plug-in electric vehicle charging in smart grids to minimize power losses and improve voltage profile. IEEE Trans. Smart Grid 2, 3 (2011), 456--467.Google ScholarGoogle ScholarCross RefCross Ref
  19. J. Duchi, A. Agarwal, and M. Wainwright. 2012. Dual averaging for distributed optimization: Convergence analysis and network scaling. IEEE Trans. Automat. Control 57, 3 (2012), 592--606.Google ScholarGoogle ScholarCross RefCross Ref
  20. J. H. Elton. 1987. An ergodic theorem for iterated maps. Ergodic Theory Dynam. Systems 7, 4 (1987), 481--488.Google ScholarGoogle ScholarCross RefCross Ref
  21. P. Ferarro, E. Crisostomi, R. Shorten, and F. Milano. 2018. Stochastic frequency control of grid-connected microgrids. IEEE Trans. Power Syst. 33, 5 (2018), 5704--5713.Google ScholarGoogle ScholarCross RefCross Ref
  22. L. P. Fernández, T. G. San Róman, R. Cossent, C. M. Domingo, and P. Frías. 2011. Assessment of the impact of plug-in electric vehicles on distribution networks. IEEE Trans. Power Syst. 26, 1 (Feb. 2011), 206--213.Google ScholarGoogle Scholar
  23. P. Finn, C. Fitzpatrick, and M. Leahy. 2009. Increased penetration of wind generated electricity using real time pricing; demand side management. In Proceedings of the IEEE International Symposium on Sustainable Systems and Technology (ISSST’09). IEEE, 1--6.Google ScholarGoogle Scholar
  24. A. Fioravanti, J. Marecek, R. Shorten, M. Souza, and F. Wirth. 2017. On classical control and Smart Cities. In Proceedings of the 56th Conference on Decision and Control (CDC’17). 1412--1420.Google ScholarGoogle Scholar
  25. S. Floyd. 2003. High Speed TCP for Large Congestion Windows. Technical Report. Internet draft draft-floyd-tcp-highspeed-02.txt, RFC 3649. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. W. Griggs, R. Ordonez-Hurtado, E. Crisostomi, F. Haeusler, K. Massow, and R. Shorten. 2015. A large-scale SUMO-based emulation platform. IEEE Trans. Intell. Transport. Syst. 16, 3 (2015), 3050--3059.Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. A. Harris. 2000. Charge of the electric car {electric vehicles}. Engineer. Technol. 4, 10 (June 2000), 52--53.Google ScholarGoogle Scholar
  28. D. J. Hartfiel. 2002. Nonhomogeneous Matrix Products. World Scientific, Singapore.Google ScholarGoogle Scholar
  29. D. Hayes and G. Armitage. 2010. Improved coexistence and loss tolerance for delay-based TCP congestion control. In Proceedings of the IEEE Local Computer Network Conference. 24--31. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. V. Jacobson. 1988. Congestion avoidance and control. ACM SIGCOMM Comput. Commun. Rev. 18, 4 (1988), 314--329. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. B. Johansson, M. Rabi, and M. Johansson. 2009. A randomized incremental subgradient method for distributed optimization in networked systems. SIAM J. Control Optimiz. 20, 3 (2009), 1157--1170.Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. K. Kar, S. Sarkar, and L. Tassiulas. 2001. A simple rate control algorithm for max total user utility. In Proceedings of the 20th Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM’01), vol. 1. IEEE, 133--141 vol.1.Google ScholarGoogle Scholar
  33. T. Kelly. 2002. On Engineering a Stable and Scalable TCP Variant. Technical Report. Cambridge University Engineering Department Technical Report CUED/F-INFENG/TR.435.Google ScholarGoogle Scholar
  34. S. Kumar, S.-J. Park, and S. S. Iyengar. 2010. A loss-event driven scalable fluid simulation method for high-speed networks. Comput. Netw. 54, 1 (2010), 112--132. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. S. Kunniyur and R. Srikant. 2003a. End-to-end congestion control schemes: Utility functions, random losses and ECN marks. IEEE/ACM Trans. Netw. 11, 5 (2003), 689--702. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. S. S. Kunniyur and R. Srikant. 2003b. Stable, scalable, fair congestion control and AQM schemes that achieve high utilisation in the internet. IEEE Trans. Automat. Control 48, 11 (2003), 2024--2029.Google ScholarGoogle ScholarCross RefCross Ref
  37. N. Li, L. Chen, and S. H. Low. 2011. Optimal demand response based on utility maximization in power networks. In Proceedings of the IEEE Power and Energy Society General Meeting. IEEE, 1--8.Google ScholarGoogle Scholar
  38. S. Low, F. Paganini, and J. Doyle. 2002a. Internet congestion control. IEEE Control Syst. Mag. 32, 1 (2002), 28--43.Google ScholarGoogle Scholar
  39. S. H. Low, L. L. Peterson, and L. Wang. 2002b. Understanding TCP Vegas: A duality model. J. ACM 49, 2 (2002), 207--235.Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. G. Mann, R. T. McDonald, M. Mohri, N. Silberman, and D. Walker. 2009. Efficient large-scale distributed training of conditional maximum entropy models. Adv. Neural Info. Process. Syst. 22 (2009), 1231--1239. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. J. Masaki, G. G. D. Nishantha, and Y. Hayashida. 2010. Development of a high-speed transport protocol with TCP-Reno friendliness. In Proceedings of the International Conference on Advanced Communication Technology (ICACT’10), vol. 1. 174--179.Google ScholarGoogle Scholar
  42. J. L. Mathieu, M. Kamgarpour, J. Lygeros, and D. S. Callaway. 2013. Energy arbitrage with thermostatically controlled loads. In Proceedings of the European Control Conference (ECC’13). IEEE, Zurich, Switzerland, 2519--2526.Google ScholarGoogle Scholar
  43. S. Molnar, S. Balazs, and T. Tuan. 2009. A comprehensive TCP fairness analysis in high speed networks. Comput. Commun. 32 (2009), 1460--1484. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. A. Nedic and A. Ozdaglar. 2009. Distributed subgradient methods for multi-agent optimization. IEEE Trans. Automat. Control 54, 1 (2009), 48--61.Google ScholarGoogle ScholarCross RefCross Ref
  45. G. A. Putrus, P. Suwanapingkarl, D. Johnston, E. C. Bentley, and M. Narayana. 2009. Impact of electric vehicles on power distribution networks. In Proceedings of the IEEE Vehicle Power and Propulsion Conference (VPPC’09). IEEE, 827--831.Google ScholarGoogle Scholar
  46. S. S. Ram, A. Nedić, and V. V. Veeravalli. 2010. Distributed stochastic subgradient projection algorithms for convex optimization. J. Optim. Theory Appl. 147, 3 (2010), 516--545.Google ScholarGoogle ScholarCross RefCross Ref
  47. S. Sayeef, S. Heslop, D. Cornforth, T. Moore, S. Percy, J. K. Ward, A. Berry, and D. Rowe. 2012. Solar intermittency: Australia’s clean energy challenge. Retrieved from http://www.csiro.au/Organisation-Structure/Flagships/Energy-Flagship/Solar-Intermittency-Report.aspx.Google ScholarGoogle Scholar
  48. A. Schlote, F. Häusler, T. Hecker, A. Bergmann, E. Crisostomi, I. Radusch, and R. Shorten. 2013. Cooperative regulation and trading of emissions using plug-in hybrid vehicles. IEEE Trans. Intell. Transport. Syst. 14, 4 (2013), 1572--1585. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. S. E. Shafiei, H. Rasmussen, and J. Stoustrup. 2013. Model predictive control for a thermostatic controlled system. In Proceedings of the European Control Conference (ECC’13). IEEE, Zurich, Switzerland, 1559--1564.Google ScholarGoogle Scholar
  50. R. Shorten, C. King, F. Wirth, and D. Leith. 2007. Modelling TCP congestion control dynamics in drop-tail environments. Automatica 43, 3 (2007), 441--449. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. R. Shorten, F. Wirth, and D. Leith. 2006. A positive systems model of TCP-like congestion control: Asymptotic analysis. IEEE/ACM Trans. Netw. 14 (2006), 616--629.Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. S. Sinnot, R. Ordonez-Hurtado, G. Russo, and R. Shorten. 2016. On the design of a route parsing engine for connected vehicles with applications to congestion management systems. In Proceedings of the 19th IEEE International Conference on Intelligent Transportation. 1586--1591.Google ScholarGoogle Scholar
  53. R. Srikant. 2004. Internet Congestion Control. Control Theory, vol. 14. Birkhäuser, Boston, MA.Google ScholarGoogle Scholar
  54. S. Stuedli, E. Crisostomi, R. Middleton, and R. Shorten. 2012. A flexible distributed framework for realising electric and plug-in hybrid vehicle charging policies. Int. J. Control 85, 8 (2012), 1130--1145.Google ScholarGoogle ScholarCross RefCross Ref
  55. K. Tan, J. Song, Q. Zhang, and M. Sridharan. 2006. A compound TCP approach for high-speed and long distance networks. In Proceedings of the 25th Conference of the IEEE Computer and Communications Societies (INFOCOM’06). 1--12.Google ScholarGoogle Scholar
  56. D. X. Wei, C. Jin, S. H. Low, and S. Hegde. 2006. FAST TCP: Motivation, architecture, algorithms, performance. IEEE/ACM Trans. Netw. 14, 6 (2006), 1246--1259. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. F. Wirth, R. Stanojevic, R. Shorten, and D. Leith. 2006. Stochastic equilibria of AIMD communication networks. SIAM J. Matrix Anal. Appl. 28, 3 (2006), 703--723. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. L. Xu, K. Harfoush, and I. Rhee. 2004. Binary increase congestion control (BIC) for fast long-distance networks. In Proceedings of the Conference of the IEEE Computer and Communications Societies (INFOCOM’04). IEEE, 2514--2524.Google ScholarGoogle Scholar
  59. M. Zinkevich, M. Weimer, A. J. Smola, and L. Li. 2010. Parallelized stochastic gradient descent. Adv. Neural Info. Process. Syst. 23 (2010), 2595--2603. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Nonhomogeneous Place-dependent Markov Chains, Unsynchronised AIMD, and Optimisation

        Recommendations

        Reviews

        Bernard Kuc

        The transmission control protocol (TCP) that underpins most Internet traffic has a simple yet intuitively beautiful algorithm for congestion control. Every connection will gradually ramp up the bandwidth it uses until congestion occurs, at which point the connection throttles utilization. The additive-increase/multiplicative-decrease (AIMD) algorithm can be applied to a wide array of problem spaces where multiple agents compete for a limited resource. The authors propose an algorithm that allows agents to respond probabilistically to a capacity constraint event, where such a response is determined by the agent's success over either its entire past or some recent history interval. The authors also allow for each agent to have its own cost function. No inter-agent communication is required. The only coordination that is needed is for the shared resource to signal capacity constraint events and for an upfront global choice of a constant. This constant is chosen such that when multiplied by the derivative of each cost function and divided by that agent's utilization, it gives a probability value between zero and one that can be used to decide whether to respond to a capacity event. Responses are considered asynchronous. The authors prove that the algorithm will converge in the long run to an optimal state if the cost functions are strictly convex and continuously differentiable. They also show that despite having different cost functions, the agents converge to a common rate of change in their cost function. Although not the easiest paper to follow without domain knowledge or access to prior work, the authors do provide an excellent analysis of how their work differs from related research in a variety of domains.

        Access critical reviews of Computing literature here

        Become a reviewer for Computing Reviews.

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image Journal of the ACM
          Journal of the ACM  Volume 66, Issue 4
          Networking, Computational Complexity, Design and Analysis of Algorithms, Real Computation, Algorithms, Online Algorithms and Computer-aided Verification
          August 2019
          299 pages
          ISSN:0004-5411
          EISSN:1557-735X
          DOI:10.1145/3338848
          Issue’s Table of Contents

          Copyright © 2019 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 7 June 2019
          • Revised: 1 January 2019
          • Accepted: 1 January 2019
          • Received: 1 March 2016
          Published in jacm Volume 66, Issue 4

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        HTML Format

        View this article in HTML Format .

        View HTML Format