skip to main content
10.1145/3302506.3310400acmconferencesArticle/Chapter ViewAbstractPublication PagescpsweekConference Proceedingsconference-collections
research-article
Open Access

Capacity over capacitance for reliable energy harvesting sensors

Published:16 April 2019Publication History

ABSTRACT

Today, most sensors that harvest energy from indoor solar, ambient RF, or thermal gradients buffer small amounts of energy in capacitors as they intermittently work through a sensing task. While the utilization of capacitors for energy storage affords these systems indefinite lifetimes, their low energy capacity necessitates complex intermittent programming models for state retention and energy management. However, recent advances in battery technology lead us to reevaluate the impact that increased energy storage capacity may have on the necessity of these programming models and the reliability of energy harvesting sensors.

In this paper, we propose a capacity-based framework to help structure energy harvesting sensor design, analyze the impact of capacity on key reliability metrics using a data-driven simulation, and consider how backup energy storage alters the design space. We find that for many designs that utilize solar energy harvesting, increasing energy storage capacity to 1-10 mWh can obviate the need for intermittent programming techniques, augment the total harvested energy by 1.4-2.3x, and improve the availability of a sensor by 1.3-2.6x. We also show that a hybrid design using energy harvesting with a secondary-cell battery and a backup primary-cell battery can achieve 2-4x the lifetime of primary-cell only designs while eliminating the failure modes present in energy harvesting systems. Finally, we implement an indoor, solar energy harvesting sensor based on our analysis and find that its behavior aligns with our simulation's predictions.

References

  1. J. Adkins, B. Campbell, S. DeBruin, B. Ghena, B. Kempke, N. Klugman, Y.-s. Kuo, D. Natarajan, P. Pannuto, T. Zachariah, and others 2015. Demo: Michigan's IoT Toolkit (SenSys'15). Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. J. Adkins, B. Ghena, N. Jackson, P. Pannuto, S. Rohrer, B. Campbell, and P. Dutta 2018. The Signpost Platform for City-Scale Sensing (IPSN'18). Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Analog Devices. ADP5091 Datasheet. http://www.analog.com/media/en/technical-documentation/data-sheets/ADP5091-5092.pdf. (2017).Google ScholarGoogle Scholar
  4. AVX. TPS Series Capacitor Datasheet. http://datasheets.avx.com/TPS.pdf. (2018).Google ScholarGoogle Scholar
  5. I. Belharouak, G. M. Koenig, and K. Amine, Electrochemistry and safety of Li4Ti5O12 and graphite anodes paired with LiMn2O4 for hybrid electric vehicle Li-ion battery applications. Journal of Power Sources 196, 23 (2011).Google ScholarGoogle ScholarCross RefCross Ref
  6. M. Brunell, B. Hanauer, M. Loveridge, R. Dashwood, and R. Bhagat 2016. Effect of Zero Volt Storage on Commercial Lithium Titanate Cells. In Meeting Abstracts.Google ScholarGoogle Scholar
  7. A. B. Brush, B. Lee, R. Mahajan, S. Agarwal, S. Saroiu, and C. Dixon 2011. Home Automation in the Wild: Challenges and Opportunities (CHI '11). Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. B. Campbell and P. Dutta 2014. An Energy-harvesting Sensor Architecture and Toolkit for Building Monitoring and Event Detection (BuildSys'14). Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. A. Colin, G. Harvey, B. Lucia, and A. P. Sample, An energy-interference-free hardware-software debugger for intermittent energy-harvesting systems. ACM SIGOPS Operating Systems Review 50, 2 (2016).Google ScholarGoogle Scholar
  10. A. Colin, E. Ruppel, and B. Lucia 2018. A Reconfigurable Energy Storage Architecture for Energy-harvesting Devices (ASPLOS '18). Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. P. Corke, P. Valencia, P. Si, T. Wark, and L. Overs 2007. Long-duration solar-powered wireless sensor networks (SenSys'07). Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. S. DeBruin, B. Campbell, and P. Dutta 2013. Monjolo: An energy-harvesting energy meter architecture (SenSys'13). Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. W. K. Edwards and R. E. Grinter 2001. At Home with Ubiquitous Computing: Seven Challenges (UbiComp '01). Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. M. Gorlatova, A. Wallwater, and G. Zussman, Networking low-power energy harvesting devices: Measurements and algorithms. IEEE Transactions on Mobile Computing 12, 9 (2013). Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. J. Hester, L. Sitanayah, and J. Sorber 2015. Tragedy of the Coulombs: Federating Energy Storage for Tiny, Intermittently-Powered Sensors (SenSys '15). Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. J. Hester and J. Sorber 2017. Flicker: Rapid Prototyping for the Batteryless Internet-of-Things (SenSys '17). Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. J. Hester and J. Sorber 2017. The Future of Sensing is Batteryless, Intermittent, and Awesome (SenSys '17). Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. J. Hester, K. Storer, and J. Sorber 2017. Timely Execution on Intermittently Powered Batteryless Sensors (SenSys '17). Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. HuaHui New Energy. LTO Battery Specification. http://www.batteryspace.com/prod-specs/7455.pdf. (2013).Google ScholarGoogle Scholar
  20. HuaHui New Energy. LTO Battery Catalog. Self hosted. Removed for Anonymity.. (2018).Google ScholarGoogle Scholar
  21. N. Jackson, J. Adkins, and P. Dutta 2018. Reconsidering Batteries in Energy Harvesting Sensing (ENSsys'18). Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. X. Jiang, J. Polastre, and D. Culler 2005. Perpetual environmentally powered sensor networks (IPSN'05). Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. A. Kansal, J. Hsu, S. Zahedi, and M. B. Srivastava, Power management in energy harvesting sensor networks. ACM Transactions on Embedded Computing Systems (TECS) 6, 4 (2007). Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. H.-S. Kim, M. P. Andersen, K. Chen, S. Kumar, W. J. Zhao, K. Ma, and D. E. Culler 2018. System Architecture Directions for Post-SoC/32-bit Networked Sensors. In Proceedings of the 16th ACM Conference on Embedded Networked Sensor Systems. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. K. Kiningham, M. Horowitz, P. Levis, and D. Boneh 2016. CESEL: Securing a Mote for 20 Years (EWSN '16). Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. F. Larsson and B.-E. Mellander, Abuse by External Heating, Overcharge and Short Circuiting of Commercial Lithium-Ion Battery Cells. Journal of The Electrochemical Society 161, 10 (2014).Google ScholarGoogle ScholarCross RefCross Ref
  27. P. Levis, N. Patel, D. Culler, and S. Shenker 2004. Trickle: A self-regulating algorithm for code propagation and maintenance in wireless sensor networks (NSDI '04). Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. K. Lin, J. Yu, J. Hsu, S. Zahedi, D. Lee, J. Friedman, A. Kansal, V. Raghunathan, and M. Srivastava 2005. Heliomote: enabling long-lived sensor networks through solar energy harvesting (SenSys'05). Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. B. Lucia, V. Balaji, A. Colin, K. Maeng, and E. Ruppel 2017. Intermittent Computing: Challenges and Opportunities. In SNAPL.Google ScholarGoogle Scholar
  30. B. Lucia and B. Ransford, A simpler, safer programming and execution model for intermittent systems. ACM SIGPLAN Notices 50, 6 (2015). Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson 2002. Wireless sensor networks for habitat monitoring (WSNA'02). Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. R. Margolies, M. Gorlatova, J. Sarik, G. Stanje, J. Zhu, P. Miller, M. Szczodrak, B. Vigraham, L. Carloni, P. Kinget, and others, Energy-harvesting active networked tags (EnHANTs): Prototyping and experimentation (TOSN). Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. P. Martin, Z. Charbiwala, and M. Srivastava 2012. DoubleDip: Leveraging thermoelectric harvesting for low power monitoring of sporadic water use (SenSys'12). Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Maxim Integrated. MAX17222 Datasheet. https://datasheets.maximintegrated.com/en/ds/MAX17220-MAX17225.pdf. (2017).Google ScholarGoogle Scholar
  35. Murata. DMF Series EDLCs. https://www.murata.com/en-us/products/productdata/8796857270302/MFCDSF1E.pdf. (2016).Google ScholarGoogle Scholar
  36. N. Omar, M. A. Monem, Y. Firouz, J. Salminen, J. Smekens, O. Hegazy, H. Gaulous, G. Mulder, P. V. d. Bossche, T. Coosemans, and J. V. Mierlo, Lithium iron phosphate based battery---Assessment of the aging parameters and development of cycle life model. Applied Energy 113 (2014).Google ScholarGoogle Scholar
  37. J. Polastre, R. Szewczyk, and D. Culler 2005. Telos: enabling ultra-low power wireless research (IPSN'05). Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Pressac. Pressac CO2 Sensor Datasheet. http://www.pressac.com/help/CO2TemperatureAndHumiditySensor.html. (2017).Google ScholarGoogle Scholar
  39. H. Raisigel, G. Chabanis, I. Ressejac, and M. Trouillon 2010. Autonomous wireless sensor node for building climate conditioning application (SENSORCOMM'10). Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. B. Ransford, J. Sorber, and K. Fu, Mementos: System support for long-running computation on RFID-scale devices. Acm Sigplan Notices 47, 4 (2012). Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. E. Shehan and W. K. Edwards 2007. Home Networking and HCI: What Hath God Wrought? (CHI '07). Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Shenzhen Hibatt Technology. Mini LiFePo4 Battery. https://www.alibaba.com/product-detail/Mini-LiFePO4-battery-10130-30mAh-3_60717575578.html. (2018).Google ScholarGoogle Scholar
  43. Texas Instruments. BQ25505 Datasheet. http://www.ti.com/lit/ds/symlink/bq25505.pdf. (2015).Google ScholarGoogle Scholar
  44. J. Wang, P. Liu, J. Hicks-Garner, E. Sherman, S. Soukiazian, M. Verbrugge, H. Tataria, J. Musser, and P. Finamore, Cycle-life model for graphite-LiFePO4 cells. Journal of Power Sources 196, 8 (2011).Google ScholarGoogle Scholar
  45. L. Yerva, B. Campbell, A. Bansal, T. Schmid, and P. Dutta 2012. Grafting Energy-harvesting Leaves Onto the Sensornet Tree (IPSN'12). Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Capacity over capacitance for reliable energy harvesting sensors

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in
          • Published in

            cover image ACM Conferences
            IPSN '19: Proceedings of the 18th International Conference on Information Processing in Sensor Networks
            April 2019
            365 pages
            ISBN:9781450362849
            DOI:10.1145/3302506

            Copyright © 2019 Owner/Author

            This work is licensed under a Creative Commons Attribution International 4.0 License.

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 16 April 2019

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article

            Acceptance Rates

            IPSN '19 Paper Acceptance Rate25of91submissions,27%Overall Acceptance Rate143of593submissions,24%

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader