skip to main content
10.1145/3290605.3300441acmconferencesArticle/Chapter ViewAbstractPublication PageschiConference Proceedingsconference-collections
research-article

Drag:on: A Virtual Reality Controller Providing Haptic Feedback Based on Drag and Weight Shift

Authors Info & Claims
Published:02 May 2019Publication History

ABSTRACT

Standard controllers for virtual reality (VR) lack sophisticated means to convey a realistic, kinesthetic impression of size, resistance or inertia. We present the concept and implementation of Drag:on, an ungrounded shape-changing VR controller that provides dynamic passive haptic feedback based on drag, i.e. air resistance, and weight shift. Drag:on leverages the airflow occurring at the controller during interaction. By dynamically adjusting its surface area, the controller changes the drag and rotational inertia felt by the user. In a user study, we found that Drag:on can provide distinguishable levels of haptic feedback. Our prototype increases the haptic realism in VR compared to standard controllers and when rotated or swung improves the perception of virtual resistance. By this, Drag:on provides haptic feedback suitable for rendering different virtual mechanical resistances, virtual gas streams, and virtual objects differing in scale, material and fill state.

Skip Supplemental Material Section

Supplemental Material

paper211p.mp4

mp4

3.7 MB

pn3526.mp4

mp4

88.9 MB

References

  1. Jason Alexander, Anne Roudaut, Jürgen Steimle, Kasper Hornbæk, Miguel Bruns Alonso, Sean Follmer, and Timothy Merritt. 2018. Grand Challenges in Shape-Changing Interface Research. In Proc. CHI (CHI '18). ACM, New York, NY, USA, Article 299, 14 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Bruno Araujo, Ricardo Jota, Varun Perumal, Jia Xian Yao, Karan Singh, and Daniel Wigdor. 2016. Snake Charmer: Physically Enabling Virtual Objects. In Proc. TEI (TEI '16). ACM, New York, NY, USA, 218--226. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Mahdi Azmandian, Mark Hancock, Hrvoje Benko, Eyal Ofek, and Andrew D. Wilson. 2016. Haptic Retargeting: Dynamic Repurposing of Passive Haptics for Enhanced Virtual Reality Experiences. In Proc. CHI (CHI '16). ACM, New York, NY, USA, 1968--1979. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Hrvoje Benko, Christian Holz, Mike Sinclair, and Eyal Ofek. 2016. NormalTouch and TextureTouch: High-fdelity 3D Haptic Shape Rendering on Handheld Virtual Reality Controllers. In Proc. UIST (UIST '16). ACM, New York, NY, USA, 717--728. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Mourad Bouzit, George Popescu, Grigore Burdea, and Rares Boian. 2002. The Rutgers Master II-ND Force Feedback Glove. In Proc. HAPTICS. IEEE Computer Society, 145--152. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Lung-Pan Cheng, Li Chang, Sebastian Marwecki, and Patrick Baudisch. 2018. iTurk: Turning Passive Haptics into Active Haptics by Making Users Reconfgure Props in Virtual Reality. In Proc. CHI (CHI '18). ACM, New York, NY, USA, Article 89, 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Lung-Pan Cheng, Patrick Lühne, Pedro Lopes, Christoph Sterz, and Patrick Baudisch. 2014. Haptic Turk: A Motion Platform Based on People. In Proc. CHI (CHI '14). ACM, New York, NY, USA, 3463--3472. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Lung-Pan Cheng, Eyal Ofek, Christian Holz, Hrvoje Benko, and Andrew D. Wilson. 2017. Sparse Haptic Proxy: Touch Feedback in Virtual Environments Using a General Passive Prop. In Proc. CHI (CHI '17). ACM, New York, NY, USA, 3718--3728. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Lung-Pan Cheng, Thijs Roumen, Hannes Rantzsch, Sven Köhler, Patrick Schmidt, Robert Kovacs, Johannes Jasper, Jonas Kemper, and Patrick Baudisch. 2015. TurkDeck: Physical Virtual Reality Based on People. In Proc. UIST (UIST '15). ACM, New York, NY, USA, 417--426. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Inrak Choi, Heather Culbertson, Mark R. Miller, Alex Olwal, and Sean Follmer. 2017. Grabity: A Wearable Haptic Interface for Simulating Weight and Grasping in Virtual Reality. In Proc. UIST (UIST '17). ACM, New York, NY, USA, 119--130. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Inrak Choi and Sean Follmer. 2016. Wolverine: A Wearable Haptic Interface for Grasping in VR. In Adjunct Proc. UIST (UIST '16 Adjunct). ACM, New York, NY, USA, 117--119. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Inrak Choi, Eyal Ofek, Hrvoje Benko, Mike Sinclair, and Christian Holz. 2018. CLAW: A Multifunctional Handheld Haptic Controller for Grasping, Touching, and Triggering in Virtual Reality. In Proc. CHI (CHI '18). ACM, New York, NY, USA, Article 654, 13 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. HTC Corporation. 2018. HTC Vive Virtual Reality System. https: //www.vive.com/ Retrieved Aug 29, 2018.Google ScholarGoogle Scholar
  14. Lionel Dominjon, Anatole Lécuyer, Jean-Marie Burkhardt, Paul Richard, and Simon Richir. 2005. Infuence of Control/Display Ratio on the Perception of Mass of Manipulated Objects in Virtual Environments. In Proc. VR. IEEE Computer Society, 19--25. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Alexandra Fuchs, Miriam Sturdee, and Johannes Schöning. 2018. FoldWatch: Using Origami-inspired Paper Prototypes to Explore the Extension of Output Space in Smartwatches. In Proc. NordiCHI (NordiCHI '18). ACM, New York, NY, USA, 47--59. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Eisuke Fujinawa, Shigeo Yoshida, Yuki Koyama, Takuji Narumi, Tomohiro Tanikawa, and Michitaka Hirose. 2017. Computational Design of Hand-held VR Controllers Using Haptic Shape Illusion. In Proc. VRST (VRST '17). ACM, New York, NY, USA, Article 28, 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. James J. Gibson. 1933. Adaptation, After-efect and Contrast in the Perception of Curved Lines. Journal of Experimental Psychology 16, 1 (1933), 1--31.Google ScholarGoogle ScholarCross RefCross Ref
  18. Xiaochi Gu, Yifei Zhang, Weize Sun, Yuanzhe Bian, Dao Zhou, and Per Ola Kristensson. 2016. Dexmo: An Inexpensive and Lightweight Mechanical Exoskeleton for Motion Capture and Force Feedback in VR. In Proc. CHI (CHI '16). ACM, New York, NY, USA, 1991--1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Seongkook Heo, Christina Chung, Geehyuk Lee, and Daniel Wigdor. 2018. Thor's Hammer: An Ungrounded Force Feedback Device Utilizing Propeller-Induced Propulsive Force. In Proc. CHI (CHI '18). ACM, New York, NY, USA, Article 525, 11 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Brent Edward Insko. 2001. Passive Haptics Signifcantly Enhances Virtual Environments. Ph.D. Dissertation. University of North Carolina at Chapel Hill, USA. http://www.cs.unc.edu/techreports/01-017.pdfGoogle ScholarGoogle Scholar
  21. Seungwoo Je, Hyelip Lee, Myung Jin Kim, and Andrea Bianchi. 2018. Wind-Blaster: A Wearable Propeller-based Prototype That Provides Ungrounded Force-Feedback. In ACM SIGGRAPH 2018 Emerging Technologies (SIGGRAPH '18). ACM, New York, NY, USA, Article 23, 2 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Luv Kohli. 2013. Redirected Touching. Ph.D. Dissertation. University of North Carolina at Chapel Hill, USA. http://www.cs.unc.edu/techreports/13-002.pdf Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Andrey Krekhov, Katharina Emmerich, Philipp Bergmann, Sebastian Cmentowski, and Jens Krüger. 2017. Self-Transforming Controllers for Virtual Reality First Person Shooters. In Proc. CHI PLAY (CHI PLAY '17). ACM, New York, NY, USA, 517--529. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Johnny C. Lee, Scott E. Hudson, and Edward Tse. 2008. Foldable Interactive Displays. In Proc. UIST (UIST '08). ACM, New York, NY, USA, 287--290. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Pedro Lopes, Alexandra Ion, and Patrick Baudisch. 2015. Impacto: Simulating Physical Impact by Combining Tactile Stimulation with Electrical Muscle Stimulation. In Proc. UIST (UIST '15). ACM, New York, NY, USA, 11--19. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Pedro Lopes, Sijing You, Lung-Pan Cheng, Sebastian Marwecki, and Patrick Baudisch. 2017. Providing Haptics to Walls & Heavy Objects in Virtual Reality by Means of Electrical Muscle Stimulation. In Proc. CHI (CHI '17). ACM, New York, NY, USA, 1471--1482. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Thomas H. Massie and J. Kenneth Salisbury. 1994. The PHANToM Haptic Interface: A Device for Probing Virtual Objects. In Proc. ASME Dynamic Systems and Control Division. 295--301.Google ScholarGoogle Scholar
  28. William A. McNeely. 1993. Robotic Graphics: A New Approach to Force Feedback for Virtual Reality. In Proc. VRAIS. IEEE Computer Society, 336--341. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. William R. Provancher. 2014. Creating Greater VR Immersion by Emulating Force Feedback with Ungrounded Tactile Feedback. IQT Quarterly 6, 2 (2014), 18--21. http://tacticalhaptics.com/wp-content/ uploads/2013/10/IQT_Quarterly_Fall_2014_Provancher-Final.pdfGoogle ScholarGoogle Scholar
  30. Michael Rietzler, Florian Geiselhart, Jan Gugenheimer, and Enrico Rukzio. 2018. Breaking the Tracking: Enabling Weight Perception Using Perceivable Tracking Ofsets. In Proc. CHI (CHI '18). ACM, New York, NY, USA, Article 128, 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Michael Rietzler, Katrin Plaumann, Taras Kränzle, Marcel Erath, Alexander Stahl, and Enrico Rukzio. 2017. VaiR: Simulating 3D Airfows in Virtual Reality. In Proc. CHI (CHI '17). ACM, New York, NY, USA, 5669--5677. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Joseph M. Romano and Katherine J. Kuchenbecker. 2009. The AirWand: Design and Characterization of a Large-Workspace Haptic Device. In 2009 IEEE International Conference on Robotics and Automation. 1461-- 1466. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Tomoya Sasaki, Richard Sahala Hartanto, Kao-Hua Liu, Keitarou Tsuchiya, Atsushi Hiyama, and Masahiko Inami. 2018. LevioPole: Mid-air Haptic Interactions Using Multirotor. In ACM SIGGRAPH 2018 Emerging Technologies (SIGGRAPH '18). ACM, New York, NY, USA, Article 12, 2 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Jotaro Shigeyama, Takeru Hashimoto, Shigeo Yoshida, Taiju Aoki, Takuji Narumi, Tomohiro Tanikawa, and Michitaka Hirose. 2018. Transcalibur: Dynamic 2D Haptic Shape Illusion of Virtual Object by Weight Moving VR Controller. In ACM SIGGRAPH 2018 Posters (SIGGRAPH '18). ACM, New York, NY, USA, Article 29, 2 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Adalberto L. Simeone, Eduardo Velloso, and Hans Gellersen. 2015. Substitutional Reality: Using the Physical Environment to Design Virtual Reality Experiences. In Proc. CHI (CHI '15). ACM, New York, NY, USA, 3307--3316. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Alexa F. Siu, Eric J. Gonzalez, Shenli Yuan, Jason B. Ginsberg, and Sean Follmer. 2018. shapeShift: 2D Spatial Manipulation and Self-Actuation of Tabletop Shape Displays for Tangible and Haptic Interaction. In Proc. CHI (CHI '18). ACM, New York, NY, USA, Article 291, 13 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Mel Slater, Martin Usoh, and Anthony Steed. 1994. Depth of Presence in Virtual Environments. Presence: Teleoperators and Virtual Environments 3, 2 (1994), 130--144. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Rajinder Sodhi, Ivan Poupyrev, Matthew Glisson, and Ali Israr. 2013. AIREAL: Interactive Tactile Experiences in Free Air. ACM Trans. Graph. 32, 4, Article 134 (July 2013), 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Mandayam A. Srinivasan and Cagatay Basdogan. 1997. Haptics in Virtual Environments: Taxonomy, Research Status, and Challenges. Computers & Graphics 21, 4 (1997), 393--404.Google ScholarGoogle ScholarCross RefCross Ref
  40. Evan Strasnick, Christian Holz, Eyal Ofek, Mike Sinclair, and Hrvoje Benko. 2018. Haptic Links: Bimanual Haptics for Virtual Reality Using Variable Stifness Actuation. In Proc. CHI (CHI '18). ACM, New York, NY, USA, Article 644, 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Yuriko Suzuki and Minoru Kobayashi. 2005. Air Jet Driven Force Feedback in Virtual Reality. IEEE Computer Graphics and Applications 25, 1 (Jan 2005), 44--47. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Yuriko Suzuki, Minoru Kobayashi, and Satoshi Ishibashi. 2002. Design of Force Feedback Utilizing Air Pressure Toward Untethered Human Interface. In CHI '02 Extended Abstracts on Human Factors in Computing Systems (CHI EA '02). ACM, New York, NY, USA, 808--809. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Susumu Tachi, Taro Maeda, Ryokichi Hirata, and Hiroshi Hoshino. 1994. A Construction Method of Virtual Haptic Space. In Proc. ICAT. 131--138. http://icat.vrsj.org/papers/94131.pdfGoogle ScholarGoogle Scholar
  44. Richard Q. Van der Linde, Piet Lammertse, Erwin Frederiksen, and B. Ruiter. 2002. The HapticMaster, a New High-Performance Haptic Interface. In Proc. Eurohaptics. 1--5.Google ScholarGoogle Scholar
  45. Eric Whitmire, Hrvoje Benko, Christian Holz, Eyal Ofek, and Mike Sinclair. 2018. Haptic Revolver: Touch, Shear, Texture, and Shape Rendering on a Reconfgurable Virtual Reality Controller. In Proc. CHI (CHI '18). ACM, New York, NY, USA, Article 86, 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. E. J. Williams. 1949. Experimental Designs Balanced for the Estimation of Residual Efects of Treatments. Australian Journal of Chemistry 2, 2 (1949), 149--168.Google ScholarGoogle ScholarCross RefCross Ref
  47. André Zenner and Antonio Krüger. 2017. Shifty: A Weight-Shifting Dynamic Passive Haptic Proxy to Enhance Object Perception in Virtual Reality. IEEE Transactions on Visualization and Computer Graphics 23, 4 (2017), 1285--1294. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Drag:on: A Virtual Reality Controller Providing Haptic Feedback Based on Drag and Weight Shift

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          CHI '19: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems
          May 2019
          9077 pages
          ISBN:9781450359702
          DOI:10.1145/3290605

          Copyright © 2019 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 2 May 2019

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

          Acceptance Rates

          CHI '19 Paper Acceptance Rate703of2,958submissions,24%Overall Acceptance Rate6,199of26,314submissions,24%

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        HTML Format

        View this article in HTML Format .

        View HTML Format