skip to main content
10.1145/3278532.3278568acmconferencesArticle/Chapter ViewAbstractPublication PagesimcConference Proceedingsconference-collections
research-article
Public Access
Distinguished Paper

Coming of Age: A Longitudinal Study of TLS Deployment

Published:31 October 2018Publication History

ABSTRACT

The Transport Layer Security (TLS) protocol is the de-facto standard for encrypted communication on the Internet. However, it has been plagued by a number of different attacks and security issues over the last years. Addressing these attacks requires changes to the protocol, to server- or client-software, or to all of them. In this paper we conduct the first large-scale longitudinal study examining the evolution of the TLS ecosystem over the last six years. We place a special focus on the ecosystem's evolution in response to high-profile attacks.

For our analysis, we use a passive measurement dataset with more than 319.3B connections since February 2012, and an active dataset that contains TLS and SSL scans of the entire IPv4 address space since August 2015. To identify the evolution of specific clients we also create the---to our knowledge---largest TLS client fingerprint database to date, consisting of 1,684 fingerprints.

We observe that the ecosystem has shifted significantly since 2012, with major changes in which cipher suites and TLS extensions are offered by clients and accepted by servers having taken place. Where possible, we correlate these with the timing of specific attacks on TLS. At the same time, our results show that while clients, especially browsers, are quick to adopt new algorithms, they are also slow to drop support for older ones. We also encounter significant amounts of client software that probably unwittingly offer unsafe ciphers. We discuss these findings in the context of long tail effects in the TLS ecosystem.

References

  1. Bro network monitoring system. https://www.bro.org/.Google ScholarGoogle Scholar
  2. Browserstack. https://www.browserstack.com.Google ScholarGoogle Scholar
  3. Bugzilla - Allow RC4 only for whitelisted hosts. https://bugzilla.mozilla.org/show_bug.cgi?id=1124039#c2.Google ScholarGoogle Scholar
  4. zgrab: A banner grabber, in go. https://github.com/zmap/zgrab.Google ScholarGoogle Scholar
  5. Mozilla Security Blog - Deprecating the RC4 cipher. https://blog.mozilla.org/security/2015/09/11/deprecating-the-rc4-cipher/, 2015.Google ScholarGoogle Scholar
  6. D. Adrian, K. Bhargavan, Z. Durumeric, P. Gaudry, M. Green, J. A. Halderman, N. Heninger, D. Springall, E. Thomé, L. Valenta, B. VanderSloot, E. Wustrow, S. Zanella-Béguelin, and P. Zimmermann. Imperfect forward secrecy: How Diffie-Hellman fails in practice. In Proc. ACM SIGSAC Conference on Computer and Communications Security (CCS), 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. D. Akhawe, J. Amann, M. Vallentin, and R. Sommer. Here's My Cert, So Trust Me, Maybe?: Understanding TLS Errors on the Web. In Proc. of the International Web Conference (WWW), 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. M. R. Albrecht and K. G. Paterson. Lucky Microseconds: A Timing Attack on Amazon's s2n Implementation of TLS. In Proc. Annual International Conference on the Theory and Applications of Cryptographic Techniques (EUROCRYPT), 2016.Google ScholarGoogle ScholarCross RefCross Ref
  9. N. J. AlFardan, D. J. Bernstein, K. G. Paterson, B. Poettering, and J. C. N. Schuldt. On the security of RC4 in TLS. In Proc. USENIX Security Symposium, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. N. J. AlFardan and K. G. Paterson. Lucky thirteen: Breaking the TLS and DTLS record protocols. In Proc. IEEE Symposium on Security and Privacy (S&P), May 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. J. Amann, R. Sommer, M. Vallentin, and S. Hall. No Attack Necessary: The Surprising Dynamics of SSL Trust Relationships. In Proc. Annual Computer Security Applications Conference, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. J. Amann, M. Vallentin, S. Hall, and R. Sommer. Extracting Certificates from Live Traffic: A Near Real-Time SSL Notary Service. Technical Report TR-12--014, ICSI, Nov. 2012.Google ScholarGoogle Scholar
  13. B. Anderson, S. Paul, and D. McGrew. Deciphering malware's use of tls (without decryption). Journal of Computer Virology and Hacking Techniques, Aug 2017.Google ScholarGoogle Scholar
  14. G. I. Apecechea, M. S. Inci, T. Eisenbarth, and B. Sunar. Lucky 13 strikes back. In Proc. ACM SIGSAC Conference on Computer and Communications Security (CCS), 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. T. Arcueri. Imperfect Forward Secrecy: The Coming Cryptocalypse, July 2016. https://tonyarcieri.com/imperfect-forward-secrecy-the-coming-cryptocalypse.Google ScholarGoogle Scholar
  16. N. Aviram, S. Schinzel, J. Somorovsky, N. Heninger, M. Dankel, J. Steube, L. Valenta, D. Adrian, J. A. Halderman, V. Dukhovni, E. Käsper, S. Cohney, S. Engels, C. Paar, and Y. Shavitt. DROWN: Breaking TLS Using SSLv2. In Proc. USENIX Security Symposium, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. B. Beurdouche, K. Bhargavan, A. Delignat-Lavaud, C. Fournet, M. Kohlweiss, A. Pironti, P. Y. Strub, and J. K. Zinzindohoue. A Messy State of the Union: Taming the Composite State Machines of TLS. In Proc. IEEE Symposium on Security and Privacy (S&P), May 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. K. Bhargavan and G. Leurent. On the practical (in-)security of 64-bit block ciphers: Collision attacks on HTTP over TLS and OpenVPN. In Proc. ACM SIGSAC Conference on Computer and Communications Security (CCS), 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Blake-Wilson, S. and Bolyard, N. and Gupta, V. and Hawk, C. and Moeller, B. Elliptic Curve Cryptography (ECC) Cipher Suites for Transport Layer Security (TLS), 2006. RFC 4492.Google ScholarGoogle Scholar
  20. R. Bricout, S. Murphy, K. G. Paterson, and T. van der Merwe. Analysing and exploiting the Mantin biases in RC4. Des. Codes Cryptography, 86(4):743--770, 2018. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. M. Brinkmann. Mozilla starts to enable TLS 1.3 on Firefox Stable, Apr. 2018. https://www.ghacks.net/2018/04/13/mozilla-starts-to-enable-tls-1-3-on-firefox-stable/.Google ScholarGoogle Scholar
  22. L. Brotherston. TLS fingerprinting. http://www.virustotal.com://github.com/LeeBrotherston/tls-fingerprinting.Google ScholarGoogle Scholar
  23. L. Chuat, P. Szalachowski, A. Perrig, B. Laurie, and E. Messeri. Efficient Gossip Protocols for Verifying the Consistency of Certificate Logs. In 2015 IEEE Conference on Communications and Network Security (CNS), 2015.Google ScholarGoogle Scholar
  24. J. Clark and P. van Oorschot. SoK: SSL and HTTPS: Revisiting past challenges and evaluating certificate trust model enhancements. In Proc. IEEE Symposium on Security and Privacy (S&P), 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. B. Coat. ProxySG, ASG and WSS will interrupt SSL connections when clients using TLS 1.3 access sites also using TLS 1.3. http://bluecoat.force.com/knowledgebase/articles/Technical_Alert/000032878, 2017.Google ScholarGoogle Scholar
  26. CVE-2011--3389. https://nvd.nist.gov/vuln/detail/CVE-2011--3389, 2011.Google ScholarGoogle Scholar
  27. CVE-2013--2566. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014--2566, 2013.Google ScholarGoogle Scholar
  28. CVE-2012--4929. https://nvd.nist.gov/vuln/detail/CVE-2012--4929, 2012.Google ScholarGoogle Scholar
  29. CVE-2013--0169. https://nvd.nist.gov/vuln/detail/CVE-2013--0169, 2013.Google ScholarGoogle Scholar
  30. CVE-2014--0160. https://nvd.nist.gov/vuln/detail/CVE-2014--0160, 2014.Google ScholarGoogle Scholar
  31. CVE-2014--3566. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014--3566, 2014.Google ScholarGoogle Scholar
  32. CVE-2015--0204. https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2015--0204, 2015.Google ScholarGoogle Scholar
  33. CVE-2015--2808. https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-CVE-2015--2808, 2015.Google ScholarGoogle Scholar
  34. CVE-2015--4000. https://cve.mitre.org/cgi-bin/cvename.cgi?name= cve-CVE-2015--4000, 2015.Google ScholarGoogle Scholar
  35. CVE-2015--7575. http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2015--7575, 2015.Google ScholarGoogle Scholar
  36. CVE-2016--0800. http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2016--0800, 2016.Google ScholarGoogle Scholar
  37. CVE-2016--2183. https://nvd.nist.gov/vuln/detail/CVE-2016--2183, 2016.Google ScholarGoogle Scholar
  38. D. Benjamin. Applying GREASE to TLS Extensibility. IETF Draft, 2016.Google ScholarGoogle Scholar
  39. T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3, bis 00 (pre-draft), Apr. 2014. https://tools.ietf.org/html/draft-ietf-tls-rfc5246-bis-00.Google ScholarGoogle Scholar
  40. Dierks, T. and Rescola, R. The Transport Layer Security (TLS) Protocol Version 1.2, 2008. RFC 5246.Google ScholarGoogle Scholar
  41. T. Duong and J. Rizzo. Here come the ⊕ ninjas. Unpublished manuscript, 2011.Google ScholarGoogle Scholar
  42. Z. Durumeric, D. Adrian, A. Mirian, M. Bailey, and J. Halderman. A Search Engine Backed by Internet-Wide Scanning. In Proc. ACM SIGSAC Conference on Computer and Communications Security (CCS), 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Z. Durumeric, D. Adrian, A. Mirian, J. Kasten, E. Bursztein, N. Lidzborski, K. Thomas, V. Eranti, M. Bailey, and J. Halderman. Neither Snow Nor Rain Nor MITM...: An Empirical Analysis of Email Delivery Security. In Proc. ACM Int. Measurement Conference (IMC), 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Z. Durumeric, J. Kasten, D. Adrian, J. Halderman, M. Bailey, F. Li, N. Weaver, J. Amann, J. Beekman, M. Payer, and V. Paxson. The matter of Heartbleed. In Proc. ACM Int. Measurement Conference (IMC), 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Z. Durumeric, Z. Ma, D. Springall, R. Barnes, N. Sullivan, E. Bursztein, M. Bailey, J. Halderman, and V. Paxson. The Security Impact of HTTPS Interception. In Proc. Network and Distributed System Security Symposium (NDSS), 2017.Google ScholarGoogle ScholarCross RefCross Ref
  46. Z. Durumeric, E. Wustrow, and J. Halderman. Zmap: Fast internet-wide scanning and its security applications. In Proc. USENIX Security Symposium, volume 2013, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. S. Fahl, M. Harbach, T. Muders, L. Baumgärtner, B. Freisleben, and M. Smith. Why Eve and Mallory love Android: An analysis of Android SSL (in) security. In Proc. ACM SIGSAC Conference on Computer and Communications Security (CCS), 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. C. Garman, K. G. Paterson, and T. van der Merwe. Attacks only get better: Password recovery attacks against RC4 in TLS. In Proc. USENIX Security Symposium, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Google. Android Developer Portal: SSLSocket. https://developer.android.com/reference/javax/net/ssl/SSLSocket.Google ScholarGoogle Scholar
  50. Google. Android Distribution dashboard. https://developer.android.com/about/dashboards/.Google ScholarGoogle Scholar
  51. M. Green. Attack of the week: FREAK (or factoring the NSA for fun and profit). https://blog.cryptographyengineering.com/2015/03/03/attack-of-week-freak-or-factoring-nsa/, 2017.Google ScholarGoogle Scholar
  52. J. Gustafsson, G. Overier, M. Arlitt, and N. Carlsson. A First Look at the CT Landscape: Certificate Transparency Logs in Practice. In Proc. Passive and Active Measurement (PAM), 2017.Google ScholarGoogle ScholarCross RefCross Ref
  53. R. Holz, J. Amann, O. Mehani, M. Wachs, and M. A. Kaafar. TLS in the wild: An Internet-wide analysis of TLS-based protocols for electronic communication. In Proc. Network and Distributed System Security Symposium (NDSS), Feb. 2016.Google ScholarGoogle ScholarCross RefCross Ref
  54. R. Holz, L. Braun, N. Kammenhuber, and G. Carle. The SSL Landscape: A Thorough Analysis of the X.509 PKI Using Active and Passive Measurements. In Proc. ACM Int. Measurement Conference (IMC), 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. M. HusÃąk, M. CermÃąk, T. JirsÃŋk, and P. Celeda. Network-Based HTTPS Client Identification Using SSL/TLS Fingerprinting. In Proc. International Conference on Availability, Reliability and Security, Aug 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. IANA. Transport Layer Security Parameters. https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml, 2017.Google ScholarGoogle Scholar
  57. IANA. Transport Layer Security (TLS) Extensions. https://www.iana.org/assignments/tls-extensiontype-values/tls-extensiontype-values.xml, 2017.Google ScholarGoogle Scholar
  58. ICSI Certificate Notary. https://notary.icsi.berkeley.edu, 2017.Google ScholarGoogle Scholar
  59. T. Jager, J. Schwenk, and J. Somorovsky. On the Security of TLS 1.3 and QUIC Against Weaknesses in PKCS#1 v1.5 Encryption. In Proc. ACM SIGSAC Conference on Computer and Communications Security (CCS), 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. D. Kaminsky, M. L. Patterson, and L. Sassaman. PKI layer cake: New collision attacks against the global X. 509 infrastructure. In International Conference on Financial Cryptography and Data Security. Springer, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. M. Majkowski. SSL fingerprinting for p0f. https://idea.popcount.org/2012-06-17-ssl-fingerprinting-for-p0f/, 2012.Google ScholarGoogle Scholar
  62. C. Meyer, J. Somorovsky, E. Weiss, J. Schwenk, S. Schinzel, and E. Tews. Revisiting SSL/TLS implementations: New bleichenbacher side channels and attacks. In Proc. USENIX Security Symposium, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. B. Möller, T. Duong, and K. Kotowicz. This POODLE bites: exploiting the SSL 3.0 fallback. Security Advisory, 2014.Google ScholarGoogle Scholar
  64. Mozilla. Firefox 52.0 - Release notes. https://www.mozilla.org/en-US/firefox/52.0/releasenotes/, 2017.Google ScholarGoogle Scholar
  65. Mozilla. Firefox 60.0 - Release notes. https://www.mozilla.org/en-US/firefox/60.0/releasenotes/, 2018.Google ScholarGoogle Scholar
  66. PCI Security. Are You Ready for 30 June 2018? Saying Goodbye to SSL/early TLS. https://blog.pcisecuritystandards.org/are-you-ready-for-30-june-2018-sayin-goodbye-to-ssl-early-tls, May 2017.Google ScholarGoogle Scholar
  67. Popov, A. Prohibiting RC4 Cipher Suites, 2015. RFC 7465.Google ScholarGoogle Scholar
  68. T. project. Tor. https://www.torproject.org/, 2018.Google ScholarGoogle Scholar
  69. Qualys. SSL Labs database of user agent capabilities. https://www.ssllabs.com/ssltest/clients.html, 2018.Google ScholarGoogle Scholar
  70. Qualys. SSL Pulse. https://www.ssllabs.com/ssl-pulse/, 2018.Google ScholarGoogle Scholar
  71. A. Razaghpanah, A. A. Niaki, N. Vallina-Rodriguez, S. Sundaresan, J. Amann, and P. Gill. Studying TLS Usage in Android Apps. In Proc. ACM Int. Conference on emerging Networking EXperiments and Technologies (CoNEXT), 2017. Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3, Draft 28, Mar. 2018. https://tools.ietf.org/html/draft-ietf-tls-tls13--28.Google ScholarGoogle ScholarCross RefCross Ref
  73. I. Ristić. HTTP client fingerprinting using SSL handshake analysis. https://blog.ivanristic.com/2009/06/http-client-fingerprinting-using-ssl-handshake-analysis.html, 2009.Google ScholarGoogle Scholar
  74. I. Ristic. Is BEAST still a threat? https://blog.qualys.com/ssllabs/2013/09/10/is-beast-still-a-threat, 2013.Google ScholarGoogle Scholar
  75. J. Rossignol. Google Says There Are Now More Than 2 Billion Monthly Active Android Devices, May 2017. https://www.macrumors.com/2017/05/17/2-billion-active-android-devices/.Google ScholarGoogle Scholar
  76. M. D. Ryan. Enhanced Certificate Transparency and End-to-End Encrypted Mail. In Network and Distributed System Security Symposium (NDSS), 2014.Google ScholarGoogle Scholar
  77. Seggelmann, R. and Tuexen, M. and Williams, M. Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS) Heartbeat Extension, 2012. RFC 6520.Google ScholarGoogle Scholar
  78. Y. Sheffer, R. Holz, and P. Saint-Andre. Recommendations for Secure Use of Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS), May 2015. RFC 7525.Google ScholarGoogle Scholar
  79. J. Somorovsky. Systematic Fuzzing and Testing of TLS Libraries. In Proc. ACM SIGSAC Conference on Computer and Communications Security (CCS), 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  80. Synopsys. The Heartbleed Bug. http://heartbleed.com/.Google ScholarGoogle Scholar
  81. S. Turner and T. Polk. Prohibiting Secure Sockets Layer (SSL) Version 2.0, March 2011. RFC 6176.Google ScholarGoogle Scholar
  82. L. Valenta, S. Cohney, A. Liao, J. Fried, S. Bodduluri, and N. Heninger. Factoring as a service. In J. Grossklags and B. Preneel, editors, Financial Cryptography and Data Security - 20th International Conference, FC 2016, Christ Church, Barbados, February 22-26, 2016, Revised Selected Papers, volume 9603 of Lecture Notes in Computer Science, pages 321--338. Springer, 2016.Google ScholarGoogle Scholar
  83. N. Vallina-Rodriguez, J. Amann, C. Kreibich, N. Weaver, and V. Paxson. A Tangled Mass: The Android Root Certificate Stores. In Proc. ACM Int. Conference on emerging Networking EXperiments and Technologies (CoNEXT), 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  84. B. VanderSloot, J. Amann, M. Bernhard, Z. Durumeric, M. Bailey, and J. Halderman. Towards a complete view of the certificate ecosystem. In Proc. ACM Int. Measurement Conference (IMC), 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  85. M. Vanhoef and F. Piessens. All your biases belong to us: Breaking RC4 in WPATKIP and TLS. In Proc. USENIX Security Symposium, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  86. S. Yilek, E. Rescorla, H. Shacham, B. Enright, and S. Savage. When Private Keys Are Public: Results from the 2008 Debian OpenSSL Vulnerability. In Proc. ACM Int. Measurement Conference (IMC), 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  87. L. Zhang, D. Choffnes, D. Levin, T. Dumitras, A. Mislove, A. Schulman, and C. Wilson. Analysis of SSL certificate reissues and revocations in the wake of Heartbleed. In Proc. ACM Int. Measurement Conference (IMC), 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in
  • Published in

    cover image ACM Conferences
    IMC '18: Proceedings of the Internet Measurement Conference 2018
    October 2018
    507 pages
    ISBN:9781450356190
    DOI:10.1145/3278532

    Copyright © 2018 ACM

    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 31 October 2018

    Permissions

    Request permissions about this article.

    Request Permissions

    Check for updates

    Qualifiers

    • research-article
    • Research
    • Refereed limited

    Acceptance Rates

    Overall Acceptance Rate277of1,083submissions,26%

    Upcoming Conference

    IMC '24
    ACM Internet Measurement Conference
    November 4 - 6, 2024
    Madrid , AA , Spain

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader