skip to main content
research-article

SweepLoc: Automatic Video-based Indoor Localization by Camera Sweeping

Authors Info & Claims
Published:18 September 2018Publication History
Skip Abstract Section

Abstract

Indoor localization based on visual landmarks has received much attention in commercial sites with rich features (e.g., shopping malls, museums) recently because landmarks are relatively stable over a long time. Prior arts often require a user to take multiple independent images around his/her location, and manually confirm shortlisted landmarks. The process is sophisticated, inconvenient, slow, unnatural and error-prone. To overcome these limitations, we propose SweepLoc, a novel, efficient and automatic video-based indoor localization system. SweepLoc mimics our natural scanning around to identify nearby landmarks in an unfamiliar site to localize.

In SweepLoc, a user simply takes a short video clip (about 6 to 8 seconds) of his/her surroundings by sweeping the camera. Using correlation and scene continuity between successive video frames, it automatically and efficiently selects key frames (where potential landmarks are centered) and subsequently reduces the decision error on landmarks. With identified landmarks, SweepLoc formulates an optimization problem to locate the user, taking compass noise and floor map constraint into account. We have implemented SweepLoc in Android platform. Our extensive experimental results in a food plaza and a premium mall demonstrate that SweepLoc is fast (less than 1 second to localize), and achieves substantially better accuracy as compared with the state-of-the-art approaches (reducing the localization error by 30%).

References

  1. P. Bahl and V. N. Padmanabhan. 2000. RADAR: an in-building RF-based user location and tracking system. In Proc. of IEEE INFOCOM, Vol. 2. IEEE, 775--784 vol.2.Google ScholarGoogle Scholar
  2. Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. 2006. SURF: speeded up robust features. In Proc. of Springer ECCV. Springer, Berlin, Heidelberg, 404--417. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Jiang Dong, Yu Xiao, Marius Noreikis, Zhonghong Ou, and Antti Ylä-Jääski. 2015. iMoon: using smartphones for image-based indoor navigation. In Proc. of ACM SenSys. New York, NY, USA, 85--97. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Jiang Dong, Yu Xiao, Zhonghong Ou, Yong Cui, and Antti Ylä-Jääski. 2016. Indoor Tracking Using Crowdsourced Maps. In Proc. of IEEE IPSN. Article 5, 6 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. G David Forney. 1973. The viterbi algorithm. Proc. IEEE 61, 3 (1973), 268--278.Google ScholarGoogle ScholarCross RefCross Ref
  6. R. Gao, Y. Tian, F. Ye, G. Luo, K. Bian, Y. Wang, T. Wang, and X. Li. 2016. Sextant: Towards ubiquitous indoor localization service by photo-taking of the environment. IEEE Trans. Mob. Comput. 15, 2 (Feb 2016), 460--474. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. R. Gao, B. Zhou, F. Ye, and Y. Wang. 2017. Knitter: Fast, resilient single-user indoor floor plan construction. In Proc. IEEE INFOCOM. IEEE, 1--9.Google ScholarGoogle Scholar
  8. Cole Gleason, Dragan Ahmetovic, Saiph Savage, Carlos Toxtli, Carl Posthuma, Chieko Asakawa, Kris M. Kitani, and Jeffrey P. Bigham. 2018. Crowdsourcing the Installation and Maintenance of Indoor Localization Infrastructure to Support Blind Navigation. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2, 1, Article 9 (March 2018), 25 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Fei Gu, Jianwei Niu, and Lingjie Duan. 2017. WAIPO: A Fusion-Based Collaborative Indoor Localization System on Smartphones. IEEE/ACM Trans. Netw. 25, 4 (Aug 2017), 2267--2280. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. B. Guo, Q. Han, H. Chen, L. Shangguan, Z. Zhou, and Z. Yu. 2017. The Emergence of Visual Crowdsensing: Challenges and Opportunities. Commun. Surveys Tuts. 19, 4 (Fourthquarter 2017), 2526--2543.Google ScholarGoogle ScholarCross RefCross Ref
  11. J. F. Henriques, R. Caseiro, P. Martins, and J. Batista. 2015. High-speed tracking with kernelized correlation filters. IEEE Trans. Pattern Anal. Mach. Intell. 37, 3 (March 2015), 583--596.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Girshick, Sergio Guadarrama, and Trevor Darrell. 2014. Caffe: convolutional architecture for fast feature embedding. In Proc. of ACM MM. 675--678. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Hernisa Kacorri, Eshed Ohn-Bar, Kris M. Kitani, and Chieko Asakawa. 2018. Environmental Factors in Indoor Navigation Based on Real-World Trajectories of Blind Users. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems. ACM, New York, NY, USA, Article 56, 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Alex Kendall, Matthew Grimes, and Roberto Cipolla. 2015. PoseNet: a convolutional network for real-time 6-DOF camera relocalization. In Proc. of IEEE ICCV. 2938--2946. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. T. H. Kim, S. Nah, and K. M. Lee. 2017. Dynamic Video Deblurring using a Locally Adaptive Linear Blur Model. IEEE Trans. Pattern Anal. Mach. Intell. PP, 99 (Oct 2017), 1--1.Google ScholarGoogle Scholar
  16. Patrick Lazik, Niranjini Rajagopal, Oliver Shih, Bruno Sinopoli, and Anthony Rowe. 2015. ALPS: A Bluetooth and Ultrasound Platform for Mapping and Localization. In Proc. ACM Sensys. ACM, 73--84. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Kai Liu, Hao Zhang, Joseph Kee-Yin Ng, Yusheng Xia, Liang Feng, Victor CS Lee, and Sang H Son. 2018. Toward Low-Overhead Fingerprint-Based Indoor Localization via Transfer Learning: Design, Implementation, and Evaluation. IEEE Trans. Ind. Informat. 14, 3 (2018), 898--908.Google ScholarGoogle ScholarCross RefCross Ref
  18. Z. Liu, L. Zhang, Q. Liu, Y. Yin, L. Cheng, and R. Zimmermann. 2017. Fusion of magnetic and visual sensors for indoor localization: infrastructure-free and more effective. IEEE Trans. Multimedia 19, 4 (April 2017), 874--888. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Chengwen Luo, Hande Hong, Mun Choon Chan, Jianqiang Li, Xinglin Zhang, and Zhong Ming. 2018. MPiLoc: Self-Calibrating Multi-Floor Indoor Localization Exploiting Participatory Sensing. IEEE Trans. Mob. Comput. 17, 1 (2018), 141--154.Google ScholarGoogle ScholarCross RefCross Ref
  20. Raul Mur-Artal and Juan D Tardós. 2017. Orb-slam2: An opensource slam system for monocular, stereo, and rgb-d cameras. IEEE Trans. Robot. 33, 5 (2017), 1255--1262.Google ScholarGoogle ScholarCross RefCross Ref
  21. S. Papaioannou, A. Markham, and N. Trigoni. 2017. Tracking People in Highly Dynamic Industrial Environments. IEEE Trans. Mob. Comput. 16, 8 (Aug 2017), 2351--2365.Google ScholarGoogle ScholarCross RefCross Ref
  22. Valter Pasku, Alessio De Angelis, Darmindra D. Arumugam, Marco Dionigi, Paolo Carbone, Antonio Moschitta, and David S. Ricketts. 2017. Magnetic Field-Based Positioning Systems. IEEE Commun. Surveys Tuts. 19, 3 (Mar 2017), 2003--2017.Google ScholarGoogle ScholarCross RefCross Ref
  23. Claudio Piciarelli. 2016. Visual indoor localization in known environments. IEEE Signal Process. Lett. 23, 10 (2016), 1330--1334.Google ScholarGoogle ScholarCross RefCross Ref
  24. Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2015. Faster R-CNN: towards real-time object detection with region proposal networks. In Proc. of NIPS. MIT Press, 91--99. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. 2011. ORB: an efficient alternative to SIFT or SURF. In Proc. of IEEE ICCV. 2564--2571. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Torsten Sattler, Bastian Leibe, and Leif Kobbelt. 2016. Exploiting Spatial and Co-visibility Relations for Image-Based Localization. Springer International Publishing, Cham, 165--187.Google ScholarGoogle Scholar
  27. Karen Simonyan and Andrew Zisserman. 2015. Very Deep Convolutional Networks for Large-Scale Image Recognition. International Conference on Learning Representations (2015).Google ScholarGoogle Scholar
  28. Masato Sugasaki and Masamichi Shimosaka. 2017. Robust Indoor Localization Across Smartphone Models with Ellipsoid Features from Multiple RSSIs. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 1, 3, Article 103 (Sept. 2017), 16 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Xiaohua Tian, Mei Wang, Wenxin Li, Binyao Jiang, Dong Xu, Xinbing Wang, and Jun Xu. 2018. Improve Accuracy of Fingerprinting Localization with Temporal Correlation of the RSS. IEEE Trans. Mob. Comput. 17, 1 (2018), 113--126.Google ScholarGoogle ScholarCross RefCross Ref
  30. Matthew Wall. 1996. GAlib: A C++ library of genetic algorithm components. Mechanical Engineering Department, Massachusetts Institute of Technology 87 (1996), 54.Google ScholarGoogle Scholar
  31. S. Wang, S. Fidler, and R. Urtasun. 2015. Lost Shopping! Monocular Localization in Large Indoor Spaces. In Proc. IEEE ICCV. IEEE, 2695--2703. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Yu-Lin Wei, Chang-Jung Huang, Hsin-Mu Tsai, and Kate Ching-Ju Lin. 2017. CELLI: Indoor Positioning Using Polarized Sweeping Light Beams. In Proc. of ACM MobiSys. ACM, 136--147. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Hongkai Wen, Sen Wang, Ronnie Clark, Savvas Papaioannou, and Niki Trigoni. 2016. Poster: Efficient Visual Positioning with Adaptive Parameter Learning. In Proc. of IEEE IPSN. IEEE Press, Piscataway, NJ, USA, Article 34, 2 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. M. Werner, M. Kessel, and C. Marouane. 2011. Indoor positioning using smartphone camera. In Proc. of IEEE IPIN. 1--6.Google ScholarGoogle Scholar
  35. Chenshu Wu, Zheng Yang, and Chaowei Xiao. 2018. Automatic Radio Map Adaptation for Indoor Localization Using Smartphones. IEEE Trans. Mob. Comput. 17, 3 (2018), 517--528.Google ScholarGoogle ScholarCross RefCross Ref
  36. K. Wu, Jiang Xiao, Youwen Yi, Min Gao, and L. M. Ni. 2012. FILA: Fine-grained indoor localization. In Proc. IEEE INFOCOM. IEEE, 2210--2218.Google ScholarGoogle Scholar
  37. Han Xu, Zheng Yang, Zimu Zhou, and Chunyi Peng Ke Yi. 2017. TUM: Towards Ubiquitous Multi-Device Localization for Cross-Device Interaction. In Proc. IEEE INFOCOM.Google ScholarGoogle ScholarCross RefCross Ref
  38. Han Xu, Zheng Yang, Zimu Zhou, Longfei Shangguan, Ke Yi, and Yunhao Liu. 2015. Enhancing wifi-based localization with visual clues. In Proc. of ACM UbiComp. ACM, New York, New York, USA, 963--974. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Han Xu, Zheng Yang, Zimu Zhou, Longfei Shangguan, Ke Yi, and Yunhao Liu. 2016. Indoor Localization via Multimodal Sensing on Smartphones. In Proc. ACM UbiComp. ACM, 208--219. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Yi Yao, Besma Abidi, Narjes Doggaz, and Mongi Abidi. 2006. Evaluation of sharpness measures and search algorithms for the auto focusing of high-magnification images. In Visual Information Processing XV, Vol. 6246. International Society for Optics and Photonics, 62460G.Google ScholarGoogle ScholarCross RefCross Ref
  41. A. Yassin, Y. Nasser, M. Awad, A. Al-Dubai, R. Liu, C. Yuen, R. Raulefs, and E. Aboutanios. 2017. Recent Advances in Indoor Localization: A Survey on Theoretical Approaches and Applications. Commun. Surveys Tuts. 19, 2 (Secondquarter 2017), 1327--1346.Google ScholarGoogle ScholarCross RefCross Ref
  42. Xuehan Ye, Yongcai Wang, Yuhe Guo, Wei Hu, and Deying Li. 2018. Accurate and Efficient Indoor Location by Dynamic Warping in Sequence-Type Radio-Map. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2, 1 (2018), 50. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Moustafa Youssef and Ashok Agrawala. 2005. The horus WLAN location determination system. In Proc. of ACM MobiSys. 205--218. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Matthew D. Zeiler and Rob Fergus. 2014. Visualizing and Understanding Convolutional Networks. In Proc. of Springer ECCV. Springer, Cham, 818--833.Google ScholarGoogle Scholar
  45. Hongwei Zhang, Barry Lennox, Peter R Goulding, and Andrew YT Leung. 2000. A float-encoded genetic algorithm technique for integrated optimization of piezoelectric actuator and sensor placement and feedback gains. Smart Materials and Structures 9, 4 (2000), 552.Google ScholarGoogle ScholarCross RefCross Ref
  46. X. Zhang, A. K. S. Wong, C. T. Lea, and R. S. K. Cheng. 2018. Unambiguous Association of Crowd-Sourced Radio Maps to Floor Plans for Indoor Localization. IEEE Trans. Mob. Comput. 17, 2 (Feb 2018), 488--502.Google ScholarGoogle ScholarCross RefCross Ref
  47. Yongtuo Zhang, Wen Hu, Weitao Xu, Hongkai Wen, and Chun Tung Chou. 2016. NaviGlass: indoor localisation using smart glasses. In Proc. of ACM EWSN. 205--216. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Y. Zheng, G. Shen, L. Li, C. Zhao, M. Li, and F. Zhao. 2017. Travi-Navi: Self-Deployable Indoor Navigation System. IEEE/ACM Trans. Netw. 25, 5 (Oct 2017), 2655--2669. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Shilin Zhu and Xinyu Zhang. 2017. Enabling High-Precision Visible Light Localization in Today's Buildings. In Proc. of ACM MobiSys. ACM, 96--108. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Jinbo Zuo, Shuo Liu, Hao Xia, and Yanyou Qiao. 2018. Multi-Phase Fingerprint Map Based on Interpolation for Indoor Localization Using iBeacons. IEEE Sensors J. (2018), 3351--3359.Google ScholarGoogle Scholar

Index Terms

  1. SweepLoc: Automatic Video-based Indoor Localization by Camera Sweeping

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
        Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies  Volume 2, Issue 3
        September 2018
        1536 pages
        EISSN:2474-9567
        DOI:10.1145/3279953
        Issue’s Table of Contents

        Copyright © 2018 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 18 September 2018
        • Accepted: 1 September 2018
        • Revised: 1 May 2018
        • Received: 1 February 2018
        Published in imwut Volume 2, Issue 3

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader