skip to main content
research-article
Free Access

Emotion recognition using wireless signals

Authors Info & Claims
Published:22 August 2018Publication History
Skip Abstract Section

Abstract

This paper demonstrates a new technology that can infer a person's emotions from RF signals reflected off his body. EQ-Radio transmits an RF signal and analyzes its reflections off a person's body to recognize his emotional state (happy, sad, etc.). The key enabler underlying EQ-Radio is a new algorithm for extracting the individual heartbeats from the wireless signal at an accuracy comparable to on-body ECG monitors. The resulting beats are then used to compute emotion-dependent features which feed a machine-learning emotion classifier. We describe the design and implementation of EQ-Radio, and demonstrate through a user study that its emotion recognition accuracy is on par with state-of-the-art emotion recognition systems that require a person to be hooked to an ECG monitor.

References

  1. Microsoft project oxford emotion api. https://www.projectoxford.ai/emotion.Google ScholarGoogle Scholar
  2. Noise robust differentiators for second derivative estimation. http://www.holoborodko.com/pavel/downloads/NoiseRobustSecondDerivative.Google ScholarGoogle Scholar
  3. Acharya, U.R., Joseph, K.P., Kannathal, N., Lim, C.M., Suri, J.S. Heart rate variability: a review. Medical and Biological Engineering and Computing 44, 12 (2006), 1031--1051.Google ScholarGoogle Scholar
  4. Adib, F., Katabi, D. See through walls with wifi!. Proceedings of the ACMSIGCOMM 2013 (New York, NY, USA, 2013), ACM, 75--86. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Adib, F., Kabelac, Z., Katabi, D., Miller, R.C. 3d tracking via body radio reflections. 11th USENIX Symposium on Networked Systems Design and Implementation (2014). Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Adib, F., Mao, H., Kabelac, Z., Katabi, D., Miller, R.C. Smart homes that monitor breathing and heart rate. Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems (2015), ACM, 837--846. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Agrafioti, F., Hatzinakos, D., Anderson, A.K. Ecg pattern analysis for emotion detection. Affective Computing, IEEE Transactions on 3, 1 (2012),102--115. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Ali, K., Liu, A.X., Wang, W., Shahzad, M. Keystroke recognition using wifi signals. Proceedings of the 21st Annual International Conference on Mobile Computing and Networking (2015), ACM, 90--102. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Anitori, L., de Jong, A., Nennie, F. Fmcw radar for life-sign detection. Radar Conference, 2009 IEEE (2009), IEEE, 1--6.Google ScholarGoogle ScholarCross RefCross Ref
  10. Appelhans, B.M., Luecken, L.J. Heart rate variability as an index of regulated emotional responding. Review of General Psychology 10, 3 (2006), 229.Google ScholarGoogle ScholarCross RefCross Ref
  11. Boric-Lubecke, O., Massagram, W., Lubecke, V.M., Host-Madsen, A., Jokanovic, B. Heart rate variability assessment using doppler radar with linear demodulation. Microwave Conference, 2008. EuMC 2008. 38th European (2008), IEEE, 420--423.Google ScholarGoogle ScholarCross RefCross Ref
  12. Calvo, R.A., D'Mello, S. Affect detection: An interdisciplinary review of models, methods, and their applications. Affective Computing, IEEE Transactions on 1, 1 (2010), 18--37. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Cowie, R., Douglas-Cowie, E., Tsapatsoulis, N., Votsis, G., Kollias, S., Fellenz, W., Taylor, J.G. Emotion recognition in human-computer interaction. Signal Processing Magazine, IEEE 18, 1 (2001), 32--80.Google ScholarGoogle ScholarCross RefCross Ref
  14. Devijver, P.A., Kittler, J. Pattern Recognition: A Statistical Approach, volume 761. Prentice-Hall, London, 1982.Google ScholarGoogle Scholar
  15. Droitcour, A.D., Boric-Lubecke, O., Kovacs, G.T. Signal-to-noise ratio in doppler radar system for heart and respiratory rate measurements. Microwave Theory and Techniques, IEEE Transactions on 57, 10 (2009), 2498--2507.Google ScholarGoogle Scholar
  16. Ekman, P., Friesen, W.V., Ellsworth, P. Emotion in the Human Face: Guidelines for Research and an Integration of Findings. Elsevier, 2013.Google ScholarGoogle Scholar
  17. El Ayadi, M., Kamel, M.S., Karray, F. Survey on speech emotion recognition: Features, classification schemes, and databases. Pattern Recognition 44, 3 (2011), 572--587. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Elfenbein, H.A., Ambady, N. 0n the universality and cultural specificity of emotion recognition: a meta-analysis. Psychological Bulletin 128, 2 (2002), 203.Google ScholarGoogle ScholarCross RefCross Ref
  19. Fletcher, R., Han, J. Low-cost differential front-end for doppler radar vital sign monitoring. Microwave Symposium Digest, 2009. MTT'09. IEEE MTT-S International (2009), IEEE, 1325--1328.Google ScholarGoogle ScholarCross RefCross Ref
  20. Hu, W., Zhao, Z., Wang, Y., Zhang, H., Lin, F. Noncontact accurate measurement of cardiopulmonary activity using a compact quadrature doppler radar sensor. Biomedical Engineering, IEEE Transactions on 61, 3 (2014), 725--735.Google ScholarGoogle Scholar
  21. Jerritta, S., Murugappan, M., Nagarajan, R., Wan, K. Physiological signals based human emotion recognition: a review. Signal Processing and its Applications (CSPA), 2011 IEEE 7th International Colloquium on (2011), IEEE, 410--415.Google ScholarGoogle Scholar
  22. Kahou, S.E., Bouthillier, X., Lamblin, P., Gulcehre, C., Michalski, V., Konda, K., Jean, S., Froumenty, P., Dauphin, Y., Boulanger-Lewandowski, N., et al. Emonets: Multimodal deep learning approaches for emotion recognition in video. Journal on Multimodal User Interfaces (2015), 1--13.Google ScholarGoogle Scholar
  23. Kaltiokallio, O., Yigitler, H., Jantti, R., Patwari, N. Non-invasive respiration rate monitoring using a single cots tx-rx pair. Information Processing in Sensor Networks, IPSN-14 Proceedings of the 13th International Symposium on (2014), IEEE, 59--69. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Kamen, P.W., Krum, H., Tonkin, A.M. Poincare plot of heart rate variability allows quantitative display of parasympathetic nervous activity in humans. Clinical Science 91, 2 (1996), 201--208.Google ScholarGoogle ScholarCross RefCross Ref
  25. Kashdan, T.B., Mishra, A., Breen, W.E., Froh, J.J. Gender differences in gratitude: Examining appraisals, narratives, the willingness to express emotions, and changes in psychological needs. J. Pers. 77, 3 (2009), 691--730.Google ScholarGoogle ScholarCross RefCross Ref
  26. Kim, J., André, E. Emotion recognition based on physiological changes in music listening. Pattern Analysis and Machine Intelligence, IEEE Transactions on 30, 12 (2008), 2067--2083. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Kreibig, S.D. Autonomic nervous system activity in emotion: A review. Biological Psychology 84, 3 (2010), 394--421.Google ScholarGoogle ScholarCross RefCross Ref
  28. Lake, D.E., Richman, J.S., Griffin, M.P., Moorman, J.R. Sample entropy analysis of neonatal heart rate variability. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 283, 3 (2002), R789--R797.Google ScholarGoogle ScholarCross RefCross Ref
  29. Lane, R.D., McRae, K., Reiman, E.M., Chen, K., Ahern, G.L., Thayer, J.F. Neural correlates of heart rate variability during emotion. Neuroimage 44, 1 (2009), 213--222.Google ScholarGoogle ScholarCross RefCross Ref
  30. Lang, P.J. The emotion probe: studies of motivation and attention. American Psychologist 50, 5 (1995), 372.Google ScholarGoogle ScholarCross RefCross Ref
  31. Massagram, W., Lubecke, V.M., Host-Madsen, A., Boric-Lubecke, 0. Assessment of heart rate variability and respiratory sinus arrhythmia via doppler radar. Microwave Theory and Techniques, IEEE Transactions on 57, 10 (2009), 2542--2549.Google ScholarGoogle ScholarCross RefCross Ref
  32. McKinley, S., Levine, M. Cubic spline interpolation. College of the Redwoods 45, 1 (1998), 1049--1060.Google ScholarGoogle Scholar
  33. Patwari, N., Brewer, L., Tate, Q., Kaltiokallio, O., Bocca, M.. Breathfinding: A wireless network that monitors and locates breathing in a home. Selected Topics in Signal Processing, IEEE Journal of 8, 1 (2014), 30--42.Google ScholarGoogle Scholar
  34. Penzel, T., Kantelhardt, J.W., Grote, L., Peter, J.-H., Bunde, A. Comparison of detrended fluctuation analysis and spectral analysis for heart rate variability in sleep and sleep apnea. Biomedical Engineering, IEEE Transactions on 50, 10 (2003), 1143--1151.Google ScholarGoogle Scholar
  35. Picard, R.W. Affective computing: from laughter to ieee. Affective Computing, IEEE Transactions on 1, 1 (2010), 11--17. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Picard, R.W., Vyzas, E., Healey, J. Toward machine emotional intelligence: Analysis of affective physiological state. Pattern Analysis and Machine Intelligence, IEEE Transactions on 23, 10 (2001). 1175--1191. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Postolache, O., Girão, P.S., Postolache, G., Gabriel, J. Cardiorespiratory and daily activity monitor based on fmcw doppler radar embedded in a wheelchair. Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE (2011), IEEE, 1917--1920.Google ScholarGoogle Scholar
  38. Pu, Q., Gupta, S., Gollakota, S., Patel, S. Whole-home gesture recognition using wireless signals. Proceedings of the 19th Annual International Conference on Mobile Computing & Networking (2013), ACM, 27--38. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Quintana, D.S., Guastella, A.J., Outhred, T., Hickie, I.B., Kemp, A.H. Heart rate variability is associated with emotion recognition: direct evidence for a relationship between the autonomic nervous system and social cognition. International Journal of Psychophysiology 86, 2 (2012), 168--172.Google ScholarGoogle ScholarCross RefCross Ref
  40. Saha, D.P., Martin, T.L., Knapp, R.B. Towards incorporating affective feedback into context-aware intelligent environments. Affective Computing and Intelligent Interaction (ACII), 2015 International Conference on (2015), IEEE, 49--55. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Sakamoto, T., Imasaka, R., Taki, H., Sato, T., Yoshioka, M., Inoue, K., Fukuda, T., Sakai, H. Feature-based correlation and topological similarity for interbeat interval estimation using ultra-wideband radar. Biomedical Engineering, IEEE Transactions on (2015).Google ScholarGoogle Scholar
  42. Scherer, K.R. Vocal communication of emotion: A review of research paradigms. Speech Communication 40, 1 (2003), 227--256. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Sun, L., Sen, S., Koutsonikolas, D., Kim, K.-H. Widraw: Enabling hands-free drawing in the air on commodity wifi devices. Proceedings of the 21st Annual International Conference on Mobile Computing and Networking (2015), ACM, 77--89. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Sztajzel, J., et al. Heart rate variability: a noninvasive electrocardiographic method to measure the autonomic nervous system. Swiss Medical Weekly 134 (2004), 514--522.Google ScholarGoogle Scholar
  45. Tse, D., Viswanath, P. Fundamentals of Wireless Communication. Cambridge university press, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Wang, W., Liu, A.X., Shahzad, M., Ling, K., Lu, S. Understanding and modeling of wifi signal based human activity recognition. Proceedings of the 21st Annual International Conference on Mobile Computing and Networking (2015), ACM, 65--76. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Wiens, A.D., Etemadi, M., Roy, S., Klein, L., Inan, O.T. Toward continuous, noninvasive assessment of ventricular function and hemodynamics: Wearable ballistocardiography. Biomedical and Health Informatics, IEEE Journal of 19, 4 (2015), 1435--1442.Google ScholarGoogle Scholar
  48. Zeng, Z., Pantic, M., Roisman, G.I., Huang, T.S. A survey of affect recognition methods: Audio, visual, and spontaneous expressions. Pattern Analysis and Machine Intelligence, IEEE Transactions on 31, 1 (2009), 39--58. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Zhao, M., Adib, F., Katabi, D. Emotion recognition using wireless signals. Proceedings of the 22nd Annual International Conference on Mobile Computing and Networking (2016), ACM, 95--108. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Zhu, J., Rosset, S., Hastie, T., Tibshirani, R. 1-norm support vector machines. Advances in Neural Information Processing Systems 16, 1 (2004), 49--56. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Emotion recognition using wireless signals

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image Communications of the ACM
            Communications of the ACM  Volume 61, Issue 9
            September 2018
            94 pages
            ISSN:0001-0782
            EISSN:1557-7317
            DOI:10.1145/3271489
            Issue’s Table of Contents

            Copyright © 2018 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 22 August 2018

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article
            • Research
            • Refereed

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader

          HTML Format

          View this article in HTML Format .

          View HTML Format