skip to main content
10.1145/3230543.3230565acmconferencesArticle/Chapter ViewAbstractPublication PagescommConference Proceedingsconference-collections
research-article
Free Access

In-body backscatter communication and localization

Published:07 August 2018Publication History

ABSTRACT

Backscatter requires zero transmission power, making it a compelling technology for in-body communication and localization. It can significantly reduce the battery requirements (and hence the size) of micro-implants and smart capsules, and enable them to be located on-the-move inside the body. The problem however is that the electrical properties of human tissues are very different from air and vacuum. This creates new challenges for both communication and localization. For example, signals no longer travel along straight lines, which destroys the geometric principles underlying many localization algorithms. Furthermore, the human skin backscatters the signal creating strong interference to the weak in-body backscatter transmission. These challenges make deep-tissue backscatter intrinsically different from backscatter in air or vacuum. This paper introduces ReMix, a new backscatter design that is particularly customized for deep tissue devices. It overcomes interference from the body surface, and localizes the in-body backscatter devices even though the signal travels along crooked paths. We have implemented our design and evaluated it in animal tissues and human phantoms. Our results demonstrate that ReMix delivers efficient communication at an average SNR of 15.2 dB at 1 MHz bandwidth, and has an average localization accuracy of 1.4cm in animal tissues.

References

  1. A. M. A. A. T. Mobashsher. Artificial human phantoms: Human proxy in testing microwave apparatus that have electromagnetic interaction with the human body. ArXiv, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  2. A. Abid, Jonathan M. O'Brien, T. Bensel, C. Cleveland, L. Booth, B. R. Smith, R. Langer, and G. Traverso. Wireless power transfer to millimeter-sized gastrointestinal electronics validated in a swine model. Nature Scientific Reports, 2017.Google ScholarGoogle ScholarCross RefCross Ref
  3. American Society for Gastrointestinal Endoscopy. Wireless capsule endoscopy, 2013. https://www.asge.org/docs/default-source/importfiles/assets/0/73730/c4d44578-c3d0-4583-9949-b15f3e8537e0.pdf?sfvrsn=4.Google ScholarGoogle Scholar
  4. S. M. Aziz, M. Grcic, and T. Vaithianathan. A Real-Time Tracking System for an Endoscopic Capsule using Multiple Magnetic Sensors. Springer Berlin Heidelberg, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  5. M. R. Basar, F. Malek, K. M. Juni, M. S. Idris, and M. I. M. Saleh. Ingestible wireless capsule technology: A review of development and future indication. International Journal of Antennas and Propagation, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  6. D. Bharadia, K. R. Joshi, M. Kotaru, and S. Katti. BackFi: High Through-put WiFi Backscatter. ACM SIGCOMM, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. J. Brooks. Swedish workers implanted with microchips to replace cash cards and id passes. Independent UK, 2017.Google ScholarGoogle Scholar
  8. R. Chandra, A. J. Johansson, and F. Tufvesson. Localization of an rf source inside the human body for wireless capsule endoscopy. BodyNets, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. X. Chen, X. Zhang, L. Zhang, X. Li, N. Qi, H. Jiang, and Z. Wang. A wireless capsule endoscope system with low-power controlling and processing asic. IEEE Transactions on Biomedical Circuits and Systems, 2009.Google ScholarGoogle Scholar
  10. B. G. Colpitts and G. Boiteau. Harmonic radar transceiver design: miniature tags for insect tracking. IEEE Transactions on Antennas and Propagation, 2004.Google ScholarGoogle Scholar
  11. W. contributors. Eb/n0 --- wikipedia, the free encyclopedia, 2017. https://en.wikipedia.org/w/index.php?title=Eb/N0&oldid=809750730.Google ScholarGoogle Scholar
  12. W. contributors. Magnetic dipole --- wikipedia, the free encyclopedia, 2017. https://en.wikipedia.org/w/index.php?title=Magnetic_dipole&oldid=811519977.Google ScholarGoogle Scholar
  13. J. R. Cook, R. R. Bouchard, and S. Y. Emelianov. Tissue-mimicking phantoms for photoacoustic and ultrasonic imaging. Biomedical Optics Express, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  14. A. B. de GonzÃąlez and S. Darby. Risk of cancer from diagnostic x-rays: estimates for the uk and 14 other countries. The Lancet, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  15. I. Dietlicher, M. Casiraghi, C. Ares, A. Bolsi, D. Weber, A. Lomax, and F. Albertini. Experimental measurement with an anthropomorphic phantom of the proton dose distribution in the presence of metal implants. PTCOG, 2014.Google ScholarGoogle Scholar
  16. I. Dove. Analysis of radio propagation inside the human body for in-body localization purposes. Master's thesis, University of Twente, 2014.Google ScholarGoogle Scholar
  17. Ettus Research. USRP X310. https://www.ettus.com/product/details/X310-KIT.Google ScholarGoogle Scholar
  18. FCC. FCC Publication 703867, 2017. https://apps.fcc.gov/oetcf/kdb/forms/FTSSearchResultPage.cfm?id=27023&switch=P.Google ScholarGoogle Scholar
  19. K. R. Foster and J. Jaeger. Rfid inside. IEEE Spectrum, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. H. Gomes and N. B. Carvalho. Rfid for location proposes based on the intermodulation distortion. Sensors & Transducers, 2009.Google ScholarGoogle Scholar
  21. H. C. Gomes and N. B. Carvalho. The use of intermodulation distortion for the design of passive rfid. In 2007 European Radar Conference, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  22. J. Hou, Y. Zhu, L. Zhang, Y. Fu, F. Zhao, L. Yang, and G. Rong. Design and implementation of a high resolution localization system for in-vivo capsule endoscopy. In 2009 Eighth IEEE International Conference on Dependable, Autonomic and Secure Computing, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. C. Hu, M. Q. Meng, and M. Mandal. Efficient magnetic localization and orientation technique for capsule endoscopy. In 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005.Google ScholarGoogle Scholar
  24. P. Hu, P. Zhang, M. Rostami, and D. Ganesan. Braidio: An Integrated Active-Passive Radio for Mobile Devices with Asymmetric Energy Budgets. ACM SIGCOMM, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. H. J. Huisman, J. J. Fütterer, E. N. J. T. van Lin, A. Welmers, T. W. J. Scheenen, J. A. van Dalen, A. G. Visser, J. A. Witjes, and J. O. Barentsz. Prostate cancer: Precision of integrating functional mr imaging with radiation therapy treatment by using fiducial gold markers. Radiology, 2005.Google ScholarGoogle Scholar
  26. Institute of Applied Physics. Dielectric Properties of Body Tissues. http://niremf.ifac.cnr.it/tissprop/htmlclie/htmlclie.php.Google ScholarGoogle Scholar
  27. T. Instruments. ISM-Band and Short Range Device Regulatory Compliance Overview, 2005. http://www.ti.com/lit/an/swra048/swra048.pdf.Google ScholarGoogle Scholar
  28. K. Ito, K. Furuya, Y. Okano, and L. Hamada. Development and characteristics of a biological tissue-equivalent phantom for microwaves. Electronics and Communications in Japan (Part I: Communications), 2001.Google ScholarGoogle ScholarCross RefCross Ref
  29. E. Kanal, A. J. Barkovich, C. Bell, J. P. Borgstede, W. G. B. Jr, J. W. Froelich, J. R. Gimbel, J. W. Gosbee, E. Kuhni-Kaminski, P. A. Larson, J. W. L. Jr, J. Nyenhuis, D. J. Schaefer, E. A. Sebek, J. Weinreb, B. L. Wilkoff, T. O. Woods, L. Lucey, and D. Hernandez. Acr guidance document on mr safe practices: 2013. Journal Of Magnetic Resonance Imaging, 2013.Google ScholarGoogle Scholar
  30. B. Kellogg, V. Talla, S. Gollakota, and J. R. Smith. Passive wi-fi: Bringing low power to wi-fi transmissions. USENIX NSDI, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. J. Kim and Y. Rahmat-Samii. Implanted antennas inside a human body: simulations, designs, and characterizations. IEEE Transactions on Microwave Theory and Techniques, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  32. R. W. P. King, G. S. Smith, M. Owens, and T. T. Wu. Antennas in matter: Fundamentals, theory, and applications. NASA STI/Recon Technical Report A, 81, 1981.Google ScholarGoogle Scholar
  33. M. Kotaru, K. Joshi, D. Bharadia, and S. Katti. Spotfi: Decimeter level localization using wifi. ACM SIGCOMM, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. H. D. Kubo and B. C. Hill. Respiration gated radiotherapy treatment: a technical study. Physics in Medicine and Biology, 1996.Google ScholarGoogle ScholarCross RefCross Ref
  35. D. Kurup, Gunter Vermeeren, Emmeric Tanghe, W. Joseph, and L. Martens. In-to-out body antenna-independent path loss model for multilayered tissues and heterogeneous medium. IEEE Sensors, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  36. M. Lazebnik, E. L. Madsen, G. R. Frank, and S. C. Hagness. Tissue-mimicking phantom materials for narrowband and ultrawideband microwave applications. Physics in Medicine and Biology, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  37. V. Liu, A. Parks, V. Talla, S. Gollakota, D. Wetherall, and J. R. Smith. Ambient Backscatter: Wireless Communication out of Thin Air. ACM SIGCOMM, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. R. Lodato, V. Lopresto, R. Pinto, and G. Marrocco. Numerical and experimental characterization of through-the-body uhf-rfid links for passive tags implanted into human limbs. IEEE Transactions on Antennas and Propagation, 2014.Google ScholarGoogle Scholar
  39. A. Ma and A. S. Y. Poon. Midfield wireless power transfer for bioelectronics. IEEE Circuits and Systems Magazine, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  40. D. Manteuffel and M. Grimm. Localization of a functional capsule for wireless neuro-endoscopy. In 2012 IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems (BioWireleSS), 2012.Google ScholarGoogle ScholarCross RefCross Ref
  41. A. Masters and K. Michael. Lend me your arms: The use and implications of humancentric rfid. Electronic Commerce Research and Applications, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. H. J. Meyer, N. Chansue, and F. Monticelli. Implantation of radio frequency identification device (rfid) microchip in disaster victim identification (dvi). Forensic Science International, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  43. K. Michael. Rfid/nfc implants for bitcoin transactions. IEEE Consumer Electronics Magazine, 2016.Google ScholarGoogle Scholar
  44. B. J. Mohammed, A. M. Abbosh, S. Mustafa, and D. Ireland. Microwave system for head imaging. IEEE Transactions on Instrumentation and Measurement, 2014.Google ScholarGoogle Scholar
  45. C. Oancea, K. Shipulin, G. Mytsin, A. Molokanov, D. Niculae, I. Ambrozová, and M. Davídková. Effect of titanium dental implants on proton therapy delivered for head tumors: experimental validation using an anthropomorphic head phantom. Journal of Instrumentation, 2017.Google ScholarGoogle Scholar
  46. T. Onishi and S. Uebayashi. Biological Tissue-equivalent Phantoms Usable in Broadband Frequency Range. NTT DoCoMo Technical Journal, 2006.Google ScholarGoogle Scholar
  47. S. J. Orfanidis. Electromagnetic waves and antennas. Rutgers University New Brunswick, NJ, 2002.Google ScholarGoogle Scholar
  48. G. Ou, N. Shahidi, C. Galorport, O. Takach, T. Lee, and R. Enns. Effect of longer battery life on small bowel capsule endoscopy. World Journal of Gastroenterology, 2015.Google ScholarGoogle Scholar
  49. D. M. Pham and S. M. Aziz. A real-time localization system for an endoscopic capsule using magnetic sensors. IEEE Sensors, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  50. K. Rasilainen, J. Ilvonen, A. Lehtovuori, J. M. Hannula, and V. Viikari. On design and evaluation of harmonic transponders. IEEE Transactions on Antennas and Propagation, 2015.Google ScholarGoogle Scholar
  51. S. Y. Semenov, A. E. Bulyshev, A. Abubakar, V. G. Posukh, Y. E. Sizov, A. E. Souvorov, P. M. van den Berg, and T. C. Williams. Microwave-tomographic imaging of the high dielectric-contrast objects using different image-reconstruction approaches. IEEE Transactions on Microwave Theory and Techniques, 2005.Google ScholarGoogle Scholar
  52. Skyworks. SMS7630 Series. http://www.skyworksinc.com/Product/511/SMS7630_Series?IsProduct=true.Google ScholarGoogle Scholar
  53. P. R. Stauffer, F. Rossetto, M. Prakash, D. G. Neuman, and T. Lee. Phantom and animal tissues for modelling the electrical properties of human liver. International Journal of Hyperthermia, 2003.Google ScholarGoogle Scholar
  54. A. Surowiec, S. S. Stuchly, L. Eidus, and A. Swarup. In vitro dielectric properties of human tissues at radiofrequencies. Physics in Medicine and Biology, 1987.Google ScholarGoogle ScholarCross RefCross Ref
  55. Q. Tang, S. K. S. Gupta, and L. Schwiebert. Ber performance analysis of an on-off keying based minimum energy coding for energy constrained wireless sensor applications. In IEEE International Conference on Communications, 2005.Google ScholarGoogle Scholar
  56. Taoglas. PC 30 Antenna. http://www.taoglas.com/product/pc30-2g3g-cellular-fr4-pcb-antenna-mmcxmra-2/.Google ScholarGoogle Scholar
  57. D. Tse and P. Vishwanath. Fundamentals of Wireless Communications. Cambridge University Press, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. I. Umay, B. Fidan, and B. Barshan. Localization and tracking of implantable biomedical sensors. IEEE Sensors, 2017.Google ScholarGoogle ScholarCross RefCross Ref
  59. I. Umay, B. Fidan, and M. R. YÃijce. Endoscopic capsule localization with unknown signal propagation coefficients. In 2015 International Conference on Advanced Robotics (ICAR), 2015.Google ScholarGoogle ScholarCross RefCross Ref
  60. D. Vasisht, S. Kumar, and D. Katabi. Decimeter-Level Localization with a Single WiFi Access Point. USENIX NSDI, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. J. Wang, D. Vasisht, and D. Katabi. Rf-idraw: Virtual touch screen in the air using rf signals. ACM SIGCOMM, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. Y. Wang, R. Fu, Y. Ye, U. Khan, and K. Pahlavan. Performance bounds for rf positioning of endoscopy camera capsules. In 2011 IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  63. J. Xiong and K. Jamieson. ArrayTrack: A Fine-Grained Indoor Location System. USENIX NSDI, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. Y. Ye and K. Pahlavan. Accuracy bounds for and rss and toa based rf localization in capsule endoscopy. 2011.Google ScholarGoogle Scholar
  65. M. R. Yuce and T. Dissanayake. Easy-to-swallow wireless telemetry. IEEE Microwave Magazine, 2012.Google ScholarGoogle Scholar
  66. L. Zhang, Y. Zhu, T. Mo, J. Hou, and H. Hu. Design of 3d positioning algorithm based on rfid receiver array for in vivo micro-robot. In IEEE International Conference on Dependable, Autonomic and Secure Computing, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. L. Zhang, Y. Zhu, T. Mo, J. Hou, and G. Rong. Design and implementation of 3d positioning algorithms based on rf signal radiation patterns for in vivo micro-robot. International Conference on Body Sensor Networks, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. P. Zhang, D. Bharadia, K. Joshi, and S. Katti. HitchHike: Practical Backscatter Using Commodity WiFi. ACM SenSys, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  1. In-body backscatter communication and localization

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      SIGCOMM '18: Proceedings of the 2018 Conference of the ACM Special Interest Group on Data Communication
      August 2018
      604 pages
      ISBN:9781450355674
      DOI:10.1145/3230543

      Copyright © 2018 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 7 August 2018

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      Overall Acceptance Rate554of3,547submissions,16%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader