skip to main content
10.1145/3214834.3214864acmconferencesArticle/Chapter ViewAbstractPublication PagessiggraphConference Proceedingsconference-collections
course

Path tracing in production

Published:12 August 2018Publication History

ABSTRACT

The last few years have seen a decisive move of the movie making industry towards rendering using physically based methods, mostly implemented in terms of path tracing. While path tracing reached most VFX houses and animation studios at a time when a physically based approach to rendering and especially material modelling was already firmly established, the new tools brought with them a whole new balance, and many new workflows have evolved to find a new equilibrium. Letting go of instincts based on hard-learned lessons from a previous time has been challenging for some, and many different takes on a practical deployment of the new technologies have emerged. While the language and toolkit available to the technical directors keep closing the gap between lighting in the real world and the light transport simulations ran in software, an understanding of the limitations of the simulation models and a good intuition of the tradeoffs and approximations at play are of fundamental importance to make efficient use of the available resources. In this course, the novel workflows emerged during the transitions at a number of large facilities are presented to a wide audience including technical directors, artists, and researchers.

References

  1. Steve Agland. 2014. CG Rendering and ACES. http://nbviewer.ipython.org/gist/sagland/3c791e79353673fd24fa. (2014).Google ScholarGoogle Scholar
  2. Marco Ament, Christoph Bergmann, and Daniel Weiskopf. 2014. Refractive Radiative Transfer Equation. ACM Trans. on Graphics 33, 2 (April 2014), 17:1--17:22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. James Arvo. 1986. Backward Ray Tracing. In SIGGRAPH Course Notes. 259--263.Google ScholarGoogle Scholar
  4. James Arvo. 1993. Transfer equations in global illumination. In SIGGRAPH Course Notes.Google ScholarGoogle Scholar
  5. Benedikt Bitterli, Srinath Ravichandran, Thomas Müller, Magnus Wrenninge, Jan Novák, Steve Marschner, and Wojciech Jarosz. 2018. A radiative transfer framework for non-exponential media. Technical Report.Google ScholarGoogle Scholar
  6. Subrahmanyan Chandrasekar. 1960. Radiative Transfer. Dover Publications Inc. ISBN 0-486-60590-6.Google ScholarGoogle Scholar
  7. CIE. 1996. The Basis of Physical Photometry. Commission Internationale de l'Éclairage, CIE Central Bureau.Google ScholarGoogle Scholar
  8. Dennis Couzin. 2007. Optimal fluorescent colors. Color Research & Application 32, 2 (2007), 85--91.Google ScholarGoogle ScholarCross RefCross Ref
  9. R. R. Coveyou, V. R. Cain, and K. J. Yost. 1967. Adjoint and Importance in Monte Carlo Application. Nuclear Science and Engineering 27, 2 (1967), 219--234.Google ScholarGoogle ScholarCross RefCross Ref
  10. Eugene d'Eon. 2018. A reciprocal formulation of non-exponential radiative transfer. 1: Sketch and motivation. ArXiv e-prints (March 2018). arXiv:physics.comp-ph/1803.03259Google ScholarGoogle Scholar
  11. Sergej Mikhailovich Ermakow. 1975. Die Monte Carlo Methode und verwandte Fragen. VEB Deutscher Verlag der Wissenschaften.Google ScholarGoogle Scholar
  12. Hugh Fairman, Michael Brill, and Henry Hemmendinger. 1998. How the CIE 1931 color-matching functions were derived from Wright-Guild data. Color Research and Application 22, 1 (1998), 11--23.Google ScholarGoogle ScholarCross RefCross Ref
  13. Iliyan Georgiev, Jaroslav Křivánek, Tomáš Davidovič, and Philipp Slusallek. 2012. Light Transport Simulation with Vertex Connection and Merging. ACM Trans. on Graphics (Proc. SIGGRAPH Asia) 31, 6 (2012), 192:1--192:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Andrew S. Glassner. 1995. Principles of Digital Image Synthesis. Morgan Kaufmann. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Adrien Gruson, Mickaël Ribardière, Martin Šik, Jiří Vorba, Rémi Cozot, Kadi Bouatouch, and Jaroslav Křivánek. 2016. A Spatial Target Function for Metropolis Photon Tracing. ACM Trans. on Graphics 36, 1 (Nov. 2016), 4:1--4:13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Toshiya Hachisuka, Jacopo Pantaleoni, and Henrik Wann Jensen. 2012. A Path Space Extension for Robust Light Transport Simulation. ACM Trans. on Graphics (Proc. SIGGRAPH Asia) 31, 6 (2012), 191:1--191:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Frederic J. Harris. 1978. On the use of windows for harmonic analysis with the discrete Fourier transform. Proc. IEEE 66, 1 (1978), 51--83.Google ScholarGoogle ScholarCross RefCross Ref
  18. L. Henyey and J. Greenstein. 1941. Diffuse radiation in the Galaxy. Astrophysical Journal 93 (1941), 70--83.Google ScholarGoogle ScholarCross RefCross Ref
  19. Matthias Hullin, Johannes Hanika, Boris Ajdin, Jan Kautz, Hans-Peter Seidel, and Hendrik Lensch. 2010. Acquisition and Analysis of Bispectral Bidirectional Reflectance and Reradiation Distribution Functions. Transactions on Graphics (Proceedings of SIGGRAPH) 29, 4 (2010), 1--7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Wenzel Jakob and Steve Marschner. 2012. Manifold exploration: a Markov chain Monte Carlo technique for rendering scenes with difficult specular transport. ACM Trans. on Graphics (Proc. SIGGRAPH) 31, 4 (2012), 58:1--58:13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Wenzel Jakob, Jonathan T. Moon, Adam Arbree, Kavita Bala, and Steve Marschner. 2010. A Radiative Transfer Framework for Rendering Materials with Anisotropic Structure. ACM Trans. on Graphics (Proc. SIGGRAPH) 29, 10 (July 2010), 53:1--53:13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Adrian Jarabo, Carlos Aliaga, and Diego Gutierrez. 2018. A Radiative Transfer Framework for Spatially-Correlated Materials. ACM Trans. on Graphics (Proc. SIGGRAPH) 37, 4 (2018). Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Adrian Jarabo and Diego Gutierrez. 2016. Bidirectional Rendering of Polarized Light Transport. In Proceedings of CEIG '16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Adrian Jarabo, Julio Marco, Adolfo Muñoz, Raul Buisan, Wojciech Jarosz, and Diego Gutierrez. 2014. A Framework for Transient Rendering. ACM Trans. on Graphics 33, 6 (Nov. 2014), 177:1--177:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Wojciech Jarosz. 2008. Efficient Monte Carlo Methods for Light Transport in Scattering Media. Ph.D. Dissertation. UC San Diego, La Jolla, CA, USA. Advisor(s) Henrik Wann Jensen and Matthias Zwicker. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Henrik Wann Jensen. 1996. Global illumination using photon maps. In Proc. Eurographics Workshop on Rendering. 21--30. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. James T. Kajiya. 1986. The rendering equation. Computer Graphics (Proc. SIGGRAPH) (1986), 143--150. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Csaba Kelemen, László Szirmay-Kalos, György Antal, and Ferenc Csonka. 2002. A Simple and Robust Mutation Strategy for the Metropolis Light Transport Algorithm. Computer Graphics Forum 21, 3 (2002), 531--540.Google ScholarGoogle ScholarCross RefCross Ref
  29. Tzu-Mao Li, Jaakko Lehtinen, Ravi Ramamoorthi, Wenzel Jakob, and Frédo Durand. 2015. Anisotropic Gaussian Mutations for Metropolis Light Transport through Hessian-Hamiltonian Dynamics. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia) 34, 6 (Nov. 2015), 209:1--209:13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. David L. MacAdam. 1935. Maximum Visual Efficiency of Colored Materials. Journal of the Optical Society of America 25, 11 (1935), 361--367.Google ScholarGoogle ScholarCross RefCross Ref
  31. Johannes Meng, Florian Simon, Johannes Hanika, and Carsten Dachsbacher. 2015. Physically Meaningful Rendering using Tristimulus Colours. Computer Graphics Forum (Proceedings of Eurographics Symposium on Rendering) 34, 4 (June 2015), 31--40.Google ScholarGoogle ScholarCross RefCross Ref
  32. Jan Novák. 2014. Efficient Many-Light Rendering of Scenes with Participating Media. Ph.D. Dissertation. Karlsruhe Institute of Technology".Google ScholarGoogle Scholar
  33. Jan Novák, Iliyan Georgiev, Johannes Hanika, and Wojciech Jarosz. 2018. Monte Carlo Methods for Volumetric Light Transport Simulation. Computer Graphics Forum (Eurographics State of the Art Reports) 37, 2 (2018), 1--26.Google ScholarGoogle Scholar
  34. Matt Pharr, Wenzel Jakob, and Greg Humphreys. 2017. Physically Based Rendering: From Theory to Implementation (3rd ed.). Morgan Kaufmann Publishers Inc. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Matthias Raab, Daniel Seibert, and Alexander Keller. 2008. Unbiased Global Illumination with Participating Media. In Monte Carlo and Quasi-Monte Carlo Methods 2006. 591--606.Google ScholarGoogle Scholar
  36. Erwin Schrödinger. 1919. Theorie der Pigmente größter Leuchtkraft. Annalen der Physik 367, 15 (1919), 603--622.Google ScholarGoogle ScholarCross RefCross Ref
  37. Brian Smits. 1999. An RGB-to-spectrum conversion for reflectances. Journal of Graphics Tools 4, 4 (1999), 11--22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Ilya Sobol'. 1994. A Primer for the Monte Carlo Method. CRC Press.Google ScholarGoogle Scholar
  39. John Strutt. 1871. On the light from the sky, its polarization and colour. Philos. Mag. 41, 4 (1871), 107--120,274--279.Google ScholarGoogle ScholarCross RefCross Ref
  40. Kip Thorne. 2014. . W. W. Norton & Company.Google ScholarGoogle Scholar
  41. Carlos Ureña, Marcos Fajardo, and Alan King. 2013. An Area-preserving Parametrization for Spherical Rectangles. Computer Graphics Forum (Proc. Eurographics Symposium on Rendering) (2013), 59--66. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. USAS and ASME. 1967. USA Standard Letter Symbols for Illuminating Engineering. United States of America Standards Institute.Google ScholarGoogle Scholar
  43. Eric Veach. 1998. Robust Monte Carlo Methods for Light Transport Simulation. Ph.D. Dissertation. Stanford, CA, USA. Advisor(s) Guibas, Leonidas J. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Eric Veach and Leonidas J. Guibas. 1997. Metropolis Light Transport. Proc. SIGGRAPH (1997), 65--76. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Sebastian Werner, Zdravko Velinov, Wenzel Jakob, and Matthias B. Hullin. 2017. Scratch Iridescence: Wave-optical Rendering of Diffractive Surface Structure. ACM Trans. on Graphics 36, 6 (Nov. 2017), 207:1--207:14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Alexander Wilkie, Sehera Nawaz, Marc Droske, Andrea Weidlich, and Johannes Hanika. 2014. Hero Wavelength Spectral Sampling. Computer Graphics Forum (Proceedings of Eurographics Symposium on Rendering) 33, 4 (July 2014), 123--131. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. G. Wyszecki and W.S. Stiles. 2000. Color Science: Concepts and Methods, Quantitative Data and Formulae. John Wiley & Sons.Google ScholarGoogle Scholar
  48. Robert L Cook, Loren Carpenter, and Edwin Catmull. 1987. The Reyes image rendering architecture. In ACM SIGGRAPH Computer Graphics, Vol. 21. ACM, 95--102. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Johannes Hanika, Marc Droske, and Luca Fascione. 2015. Manifold next event estimation. In Computer graphics forum, Vol. 34. Wiley Online Library, 87--97. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. James T. Kajiya. 1986. The rendering equation. Computer Graphics (Proc. SIGGRAPH) (1986), 143--150. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Thomas Müller, Markus Gross, and Jan Novák. 2017. Practical Path Guiding for Efficient Light-Transport Simulation. In Computer Graphics Forum, Vol. 36. Wiley Online Library, 91--100. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Steve Bako, Thijs Vogels, Brian McWilliams, Mark Meyer, Jan Novák, Alex Harvill, Pradeep Sen, Tony DeRose, and Fabrice Rousselle. 2017. Kernel-Predicting Convolutional Networks for Denoising Monte Carlo Renderings. ACM Transactions on Graphics (TOG) (Proceedings of SIGGRAPH 2017) 36, 4 (July 2017). Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Benedikt Bitterli, Fabrice Rousselle, Bochang Moon, José A. Iglesias-Guitián, David Adler, Kenny Mitchell, Wojciech Jarosz, and Jan Novák. 2016. Nonlinearly Weighted First-order Regression for Denoising Monte Carlo Renderings. Computer Graphics Forum (Proceedings of EGSR) 35, 4 (jun 2016), 107--117. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Per H. Christensen. 2015. An Approximate Reflectance Profile for Efficient Subsurface Scattering. In ACM SIGGRAPH 2015 Talks (SIGGRAPH '15). ACM, New York, NY, USA, Article 25, 1 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Robert L. Cook, Loren Carpenter, and Edwin Catmull. 1987. The Reyes Image Rendering Architecture. In Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '87). ACM, New York, NY, USA, 95--102. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Christian Eisenacher, Gregory Nichols, Andrew Selle, and Brent Burley. 2013. Sorted Deferred Shading for Production Path Tracing. In Eurographics 2013 Papers. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Alejandro Conty Estevez and Christopher Kulla. 2017. Importance Sampling of Many Lights with Adaptive Tree Splitting. In ACM SIGGRAPH 2017 Talks (SIGGRAPH '17). ACM, New York, NY, USA, Article 33, 2 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Luca Fascione, Johannes Hanika, Marcos Fajardo, Per Christensen, Brent Burley, and Brian Green. 2017a. Path Tracing in Production - Part 1: Production Renderers. In ACM SIGGRAPH 2017 Courses (SIGGRAPH '17). ACM, New York, NY, USA, Article 13, 39 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Luca Fascione, Johannes Hanika, Rob Pieké, Christophe Hery, Ryusuke Villemin, Thorsten-Walther Schmidt, Christopher Kulla, Daniel Heckenberg, and André Mazzone. 2017b. Path Tracing in Production - Part 2: Making Movies. In ACM SIGGRAPH 2017 Courses (SIGGRAPH '17). ACM, New York, NY, USA, Article 15, 32 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. Julian Fong, Magnus Wrenninge, Christopher Kulla, and Ralf Habel. 2017. Production Volume Rendering: SIGGRAPH 2017 Course. In ACM SIGGRAPH 2017 Courses (SIGGRAPH '17). ACM, New York, NY, USA, Article 2, 79 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Eric Heitz and Eugene D'Eon. 2014. Importance Sampling Microfacet-Based BSDFs using the Distribution of Visible Normals. Computer Graphics Forum 33, 4 (July 2014), 103--112.Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. Christophe Hery and Douglas Sutton. 2001. Tutorial On Procedural Primitives. In Advanced RenderMan, Chapter 4, ACM SIGGRAPH 2001 Courses. ACM.Google ScholarGoogle Scholar
  63. Christophe Hery, Ryusuke Villemin, and Florian Hecht. 2016. Towards Bidirectional Path Tracing at Pixar. In Physically Based Shading in Theory and Practice, ACM SIGGRAPH 2016 Courses. ACM. http://graphics.pixar.com/library/BiDir/Google ScholarGoogle Scholar
  64. Christophe Hery, Ryusuke Villemin, and Junyi Ling. 2017. Pixar's Foundation for Materials. In Physically Based Shading in Theory and Practice, ACM SIGGRAPH 2017 Courses. http://graphics.pixar.com/library/PxrMaterialsCourse2017/ Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. Jaroslav Křivánek and Eugene d'Eon. 2014. A zero-variance-based sampling scheme for Monte Carlo subsurface scattering. In ACM SIGGRAPH 2014 Talks. ACM, 66. Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. Peter Kutz, Ralf Habel, Yining Karl Li, and Jan Novák. 2017. Spectral and Decomposition Tracking for Rendering Heterogeneous Volumes. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2017) 36, 4 (2017). Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. Jan Novák, Andrew Selle, and Wojciech Jarosz. 2014. Residual Ratio Tracking for Estimating Attenuation in Participating Media. Proc. SIGGRAPH 33, 6 (Nov. 2014), 179:1--179:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. Leonid Pekelis, Christophe Hery, Ryusuke Villemin, and Junyi Ling. 2015. A Data-Driven Light Scattering Model for Hair. https://graphics.pixar.com/library/DataDrivenHairScattering/. (02 2015).Google ScholarGoogle Scholar
  69. Matthias Raab, Daniel Seibert, and Alexander Keller. 2008. Unbiased Global Illumination with Participating Media. In Monte Carlo and Quasi-Monte Carlo Methods 2006, Alexander Keller, Stefan Heinrich, and Harald Niederreiter (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 591--605.Google ScholarGoogle Scholar
  70. RenderMan. 2018. RenderMan's Visuals for Coco. https://www.fxguide.com/featured/rendermans-visuals-for-coco. (2018).Google ScholarGoogle Scholar
  71. Fabrice Rousselle, Claude Knaus, and Matthias Zwicker. 2012. Adaptive Rendering with Non-local Means Filtering. ACM Trans. Graph. 31, 6, Article 195 (Nov. 2012), 11 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. Fabrice Rousselle, Marco Manzi, and Matthias Zwicker. 2013. Robust Denoising using Feature and Color Information. 32 (10 2013).Google ScholarGoogle Scholar
  73. Thorsten-Walther Schmidt, Jan Novák, Johannes Meng, Anton S. Kaplanyan, Tim Reiner, Derek Nowrouzezahrai, and Carsten Dachsbacher. 2013. Path-space Manipulation of Physically-based Light Transport. ACM Trans. Graph. 32, 4, Article 129 (July 2013), 11 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  74. Peter Shirley, Changyaw Wang, and Kurt Zimmermann. 1996. Monte Carlo Techniques for Direct Lighting Calculations. ACM Transactions on Graphics 15 (1996), 1--36. Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. Eric Veach. 1997. Robust Monte Carlo Methods for Light Transport Simulation. Ph.D. Dissertation. Stanford. http://graphics.stanford.edu/papers/veach_thesis/ Google ScholarGoogle ScholarDigital LibraryDigital Library
  76. Petr Vévoda, Ivo Kondapaneni, and Jaroslav Křivánek. 2018. Bayesian online regression for adaptive direct illumination sampling. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2018) 37, 4 (2018). Google ScholarGoogle ScholarDigital LibraryDigital Library
  77. Ryusuke Villemin and Christophe Hery. 2013. Practical Illumination from Flames. Journal of Computer Graphics Techniques (JCGT) 2, 2 (31 December 2013), 142--155. http://jcgt.org/published/0002/02/10/Google ScholarGoogle Scholar
  78. Ryusuke Villemin, Christophe Hery, and Per Christensen. 2016. Importance Resampling for BSSRDF. https://graphics.pixar.com/library/Resampling/. (05 2016).Google ScholarGoogle Scholar
  79. Ryusuke Villemin, Magnus Wrenninge, and Julian Fong. 2018. Efficient Unbiased Rendering of Thin Participating Media. Journal of Computer Graphics Techniques (JCGT) (2018).Google ScholarGoogle Scholar
  80. WetaDigital. 2014. Manuka: Weta Digital's new renderer. https://www.fxguide.com/featured/manuka-weta-digitals-new-renderer. (2014).Google ScholarGoogle Scholar
  81. Wikipedia. 2018. Level of detail. https://en.wikipedia.org/wiki/Level_of_detail. (2018).Google ScholarGoogle Scholar
  82. E.R. Woodcock, T. Murphy, P.J. Hemmings, and T.C. Longworth. 1965. Techniques used in the GEM code for Monte Carlo neutronics calculations in reactors and other systems of complex geometry. In Applications of Computing Methods to Reactor Problems. Argonne National Laboratory.Google ScholarGoogle Scholar
  83. Magnus Wrenninge, Ryusuke Villemin, and Christophe Hery. 2017. Path Traced BSSRDF. https://graphics.pixar.com/library/PathTracedSubsurface/. (07 2017).Google ScholarGoogle Scholar
  84. John Amanatides and Andrew Woo. 1987. A fast voxel traversal algorithm for ray tracing. Eurographics 87, 3 (1987), 3--10.Google ScholarGoogle Scholar
  85. Alejandro Conty Estevez and Christopher Kulla. 2017. Importance sampling of many lights with adaptive tree splitting. In ACM SIGGRAPH 2017 Talks. ACM, 33. Google ScholarGoogle ScholarDigital LibraryDigital Library
  86. Julian Fong, Magnus Wrenninge, Christopher Kulla, and Ralf Habel. 2017. Production Volume Rendering. In ACM SIGGRAPH 2017 Course Notes. ACM, 96. Google ScholarGoogle ScholarDigital LibraryDigital Library
  87. Manuel N Gamito. 2016. Solid angle sampling of disk and cylinder lights. Computer Graphics Forum 35, 4 (2016), 25--36. Google ScholarGoogle ScholarDigital LibraryDigital Library
  88. Iliyan Georgiev, Jaroslav Křivánek, Thomas Davidovic, and Philipp Slusallek. 2012. Light transport simulation with vertex connection and merging. ACM Trans. Graph. 31, 6 (2012), 192--1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  89. Iliyan Georgiev, Jaroslav Křivánek, Toshiya Hachisuka, Derek Nowrouzezahrai, and Wojciech Jarosz. 2013. Joint importance sampling of low-order volumetric scattering. ACM Trans. Graph. 32, 6 (2013), 164--1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  90. Johannes Hanika, Marc Droske, and Luca Fascione. 2015. Manifold next event estimation. Computer Graphics Forum 34, 4 (2015), 87--97. Google ScholarGoogle ScholarDigital LibraryDigital Library
  91. Wolfgang Heidrich, Philipp Slusallek, and Hans-Peter Seidel. 1998. Sampling procedural shaders using affine arithmetic. ACM Transactions on Graphics (TOG) 17, 3 (1998), 158--176. Google ScholarGoogle ScholarDigital LibraryDigital Library
  92. Wojciech Jarosz, Craig Donner, Matthias Zwicker, and Henrik Wann Jensen. 2008. Radiance caching for participating media. ACM Transactions on Graphics (TOG) 27, 1 (2008), 7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  93. Per Karefelt and Matthias Baas. 2014. Gravity: volumetrics in space. In ACM SIGGRAPH 2014 Talks. ACM, 61. Google ScholarGoogle ScholarDigital LibraryDigital Library
  94. Jaroslav Křivánek, Marcos Fajardo, Per H Christensen, Eric Tabellion, Michael Bunnell, David Larsson, Anton Kaplanyan, B Levy, and RH Zhang. 2010. Global illumination across industries. SIGGRAPH Courses 6 (2010).Google ScholarGoogle Scholar
  95. Christopher Kulla and Marcos Fajardo. 2012. Importance sampling techniques for path tracing in participating media. Computer Graphics Forum 31, 4 (2012), 1519--1528. Google ScholarGoogle ScholarDigital LibraryDigital Library
  96. Peter Kutz, Ralf Habel, Yining Karl Li, and Jan Novák. 2017. Spectral and decomposition tracking for rendering heterogeneous volumes. ACM Transactions on Graphics (TOG) 36, 4 (2017), 111. Google ScholarGoogle ScholarDigital LibraryDigital Library
  97. Julio Marco, Adrian Jarabo, Wojciech Jarosz, and Diego Gutierrez. 2018. Second-Order Occlusion-Aware Volumetric Radiance Caching. ACM Transactions on Graphics (Presented at SIGGRAPH) 37, 2 (April 2018). Google ScholarGoogle ScholarDigital LibraryDigital Library
  98. Jan Novák, Iliyan Georgiev, Johannes Hanika, and Wojciech Jarosz. 2018. Monte Carlo methods for volumetric light transport simulation. Computer Graphics Forum (Eurographics State of the Art Reports) 37, 2 (2018), 1--26. to appear.Google ScholarGoogle Scholar
  99. Jan Novák, Andrew Selle, and Wojciech Jarosz. 2014. Residual ratio tracking for estimating attenuation in participating media. ACM Trans. Graph. 33, 6 (2014), 179--1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  100. Jorge Revelles, Carlos Ureña, and Miguel Lastra. 2000. An efficient parametric algorithm for octree traversal. In The 8th International Conference in Central Europe on Computer Graphics, Visualization and Interactive Digital Media.Google ScholarGoogle Scholar
  101. Florian Simon, Johannes Hanika, Tobias Zirr, and Carsten Dachsbacher. 2017. Line Integration for Rendering Heterogeneous Emissive Volumes. Computer Graphics Forum 36, 4 (2017), 101--110. Google ScholarGoogle ScholarDigital LibraryDigital Library
  102. László Szirmay-Kalos, Iliyan Georgiev, Milán Magdics, Balázs Molnár, and Dávid Légrády. 2017. Unbiased Light Transport Estimators for Inhomogeneous Participating Media. Computer Graphics Forum 36, 2 (2017), 9--19. Google ScholarGoogle ScholarDigital LibraryDigital Library
  103. Ingo Wald, Sven Woop, Carsten Benthin, Gregory S Johnson, and Manfred Ernst. 2014. Embree: a kernel framework for efficient CPU ray tracing. ACM Transactions on Graphics (TOG) 33, 4 (2014), 143. Google ScholarGoogle ScholarDigital LibraryDigital Library
  104. Nathan Walster. 2017. Volumetric Skin and Fabric Shading at Framestore. In Physically Based Shading in Theory and Practice. ACM, 16. Siggraph 2017 Course Notes. Google ScholarGoogle ScholarDigital LibraryDigital Library
  105. J M Blair and C A Edwards. 1974. Stable rational minimax approximations to the modified Bessel functions I<sub>0</sub>(X) and I<sub>1</sub>(X). Technical Report AECL-4928. Chalk River Nuclear Laboratories. http://cds.cern.ch/record/419431Google ScholarGoogle Scholar
  106. Matt Jen-Yuan Chiang, Benedikt Bitterli, Chuck Tappan, and Brent Burley. 2015. A Practical and Controllable Hair and Fur Model for Production Path Tracing. In ACM SIGGRAPH 2015 Talks (SIGGRAPH '15). ACM, New York, NY, USA, Article 23, 1 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  107. Anthony B. Davis. 2006. Effective Propagation Kernels in Structured Media with Broad Spatial Correlations, Illustration with Large-Scale Transport of Solar Photons Through Cloudy Atmospheres. In Computational Methods in Transport, Frank Graziani (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 85--140.Google ScholarGoogle Scholar
  108. Eugene d'Eon. 2013. Publons 2867. publons.com/p/2867/. (2013).Google ScholarGoogle Scholar
  109. Eugene d'Eon, Guillaume Francois, Martin Hill, Joe Letteri, and Jean-Marie Aubry. 2011. An Energy-conserving Hair Reflectance Model. In Proceedings of the Twenty-second Eurographics Conference on Rendering (EGSR '11). Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 1181--1187. Google ScholarGoogle ScholarDigital LibraryDigital Library
  110. Eugene d'Eon, Steve Marschner, and Johannes Hanika. 2013. Importance Sampling for Physically-based Hair Fiber Models. In SIGGRAPH Asia 2013 Technical Briefs (SA '13). ACM, New York, NY, USA, Article 25, 4 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  111. Luca Fascione, Johannes Hanika, Rob Pieké, Christophe Hery, Ryusuke Villemin, Thorsten-Walther Schmidt, Christopher Kulla, Daniel Heckenberg, and André Mazzone. 2017. Path Tracing in Production - Part 2: Making Movies. In ACM SIGGRAPH 2017 Courses (SIGGRAPH '17). Article 15, 32 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  112. Daniel Heckenberg, Steve Agland, Jean Pascal leBlanc, and Raphael Barth. 2017a. Automated Light Probes from Capture to Render for Peter Rabbit. In ACM SIGGRAPH 2017 Talks (SIGGRAPH '17). ACM, New York, NY, USA, Article 17, 2 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  113. Daniel Heckenberg, Luke Emrose, Matthew Reid, Michael Balzer, Antoine Roille, and Max Liani. 2017b. Rendering the Darkness: Glimpse on the LEGO Batman Movie. In ACM SIGGRAPH 2017 Talks (SIGGRAPH '17). ACM, New York, NY, USA, Article 8, 2 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  114. Jenni Heino, Simon Arridge, Jan Sikora, and Erkki Somersalo. 2003. Anisotropic effects in highly scattering media. Phys. Rev. E 68 (Sep 2003), 031908. Issue 3.Google ScholarGoogle ScholarCross RefCross Ref
  115. Wenzel Jakob. 2012. Numerically stable sampling of the von Mises Fisher distribution on S<sup>2</sup> (and other tricks). (2012). https://www.mitsuba-renderer.org/-wenzel/files/vmf.pdfGoogle ScholarGoogle Scholar
  116. Stephen R. Marschner, Henrik Wann Jensen, Mike Cammarano, Steve Worley, and Pat Hanrahan. 2003. Light Scattering from Human Hair Fibers. ACM Trans. Graph. 22, 3 (July 2003), 780-791. Google ScholarGoogle ScholarDigital LibraryDigital Library
  117. Koji Nakamaru and Yoshio Ohno. 2002. Ray Tracing for Curves Primitive. In WSCG.Google ScholarGoogle Scholar
  118. Matt Pharr and Cem Yuksel. 2016. The Implementation of a Hair Scattering Model. (2016). http://www.pbrt.org/hair.pdfGoogle ScholarGoogle Scholar
  119. F. R. S. Sir Ronald Fisher. 1953. Dispersion on a sphere. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 217, 1130 (1953), 295--305. 1953.0064 arXiv:http://rspa.royalsocietypublishing.org/content/217/1130/295.full.pdfGoogle ScholarGoogle Scholar
  120. Matthew Reid Steve Agland and Daniel Heckenberg. 2018. Prelit Materials: Light Transport for Live-Action Elements in Production Rendering. In ACM SIGGRAPH 2018 Talks (SIGGRAPH '18). ACM, New York, NY, USA, 2. Google ScholarGoogle ScholarDigital LibraryDigital Library
  121. Ingo Wald, Sven Woop, Carsten Benthin, Gregory S. Johnson, and Manfred Ernst. 2014. Embree: A Kernel Framework for Efficient CPU Ray Tracing. ACM Trans. Graph. 33, 4, Article 143 (July 2014), 8 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  122. Ling-Qi Yan, Chi-Wei Tseng, Henrik Wann Jensen, and Ravi Ramamoorthi. 2015. Physically-accurate Fur Reflectance: Modeling, Measurement and Rendering. ACM Trans. Graph. 34, 6, Article 185 (Oct. 2015), 13 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  123. Arno Zinke and Andreas Weber. 2007. Light Scattering from Filaments. IEEE Transactions on Visualization and Computer Graphics 13, 2 (March 2007), 342--356. Google ScholarGoogle ScholarDigital LibraryDigital Library

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in
  • Published in

    cover image ACM Conferences
    SIGGRAPH '18: ACM SIGGRAPH 2018 Courses
    August 2018
    1047 pages
    ISBN:9781450358095
    DOI:10.1145/3214834

    Copyright © 2018 Owner/Author

    Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 12 August 2018

    Check for updates

    Qualifiers

    • course

    Acceptance Rates

    Overall Acceptance Rate1,822of8,601submissions,21%

    Upcoming Conference

    SIGGRAPH '24

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader