skip to main content
10.1145/3209978.3209981acmconferencesArticle/Chapter ViewAbstractPublication PagesirConference Proceedingsconference-collections
research-article

Adversarial Personalized Ranking for Recommendation

Authors Info & Claims
Published:27 June 2018Publication History

ABSTRACT

Item recommendation is a personalized ranking task. To this end, many recommender systems optimize models with pairwise ranking objectives, such as the Bayesian Personalized Ranking (BPR). Using matrix Factorization (MF) - the most widely used model in recommendation - as a demonstration, we show that optimizing it with BPR leads to a recommender model that is not robust. In particular, we find that the resultant model is highly vulnerable to adversarial perturbations on its model parameters, which implies the possibly large error in generalization. To enhance the robustness of a recommender model and thus improve its generalization performance, we propose a new optimization framework, namely Adversarial Personalized Ranking (APR). In short, our APR enhances the pairwise ranking method BPR by performing adversarial training. It can be interpreted as playing a minimax game, where the minimization of the BPR objective function meanwhile defends an adversary, which adds adversarial perturbations on model parameters to maximize the BPR objective function. To illustrate how it works, we implement APR on MF by adding adversarial perturbations on the embedding vectors of users and items. Extensive experiments on three public real-world datasets demonstrate the effectiveness of APR - by optimizing MF with APR, it outperforms BPR with a relative improvement of 11.2% on average and achieves state-of-the-art performance for item recommendation. Our implementation is available at: \urlhttps://github.com/hexiangnan/adversarial_personalized_ranking.

References

  1. T. Bai, J. Wen, J. Zhang, and W. X. Zhao. A neural collaborative filtering model with interaction-based neighborhood. In CIKM, pages 1979--1982, 2017. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. I. Bayer, X. He, B. Kanagal, and S. Rendle. A generic coordinate descent framework for learning from implicit feedback. In WWW, pages 1341--1350, 2017. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. A. Beutel, P. Covington, S. Jain, C. Xu, J. Li, V. Gatto, and E. H. Chi. Latent cross: Making use of context in recurrent recommender systems. In WSDM, pages 46--54, 2018. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. R. Burke, M. P. O'Mahony, and N. J. Hurley. Robust Collaborative Recommendation, pages 961--995. Springer US, Boston, MA, 2015.Google ScholarGoogle Scholar
  5. D. Cao, X. He, L. Miao, Y. An, C. Yang, and R. Hong. Attentive group recommendation. In SIGIR, 2018. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. D. Cao, L. Nie, X. He, X. Wei, S. Zhu, and T.-S. Chua. Embedding factorization models for jointly recommending items and user generated lists. In SIGIR, pages 585--594, 2017. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. J. Chen, H. Zhang, X. He, L. Nie, W. Liu, and T.-S. Chua. Attentive collaborative filtering: Multimedia recommendation with item- and component-level attention. In SIGIR, pages 335--344, 2017. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. X. Chen, Y. Zhang, Q. Ai, H. Xu, J. Yan, and Z. Qin. Personalized key frame recommendation. In SIGIR, pages 315--324, 2017. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Z. Cheng, Y. Ding, X. He, L. Zhu, X. Song, and M. Kankanhalli. $A^3$NCF: An adaptive aspect attention model for rating prediction. In IJCAI, 2018.Google ScholarGoogle ScholarCross RefCross Ref
  10. P. Cremonesi, Y. Koren, and R. Turrin. Performance of recommender algorithms on top-n recommendation tasks. In RecSys, pages 39--46, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. J. Ding, F. Feng, X. He, G. Yu, Y. Li, and D. Jin. An improved sampler for bayesian personalized ranking by leveraging view data. In WWW, pages 13--14, 2018. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic optimization. Journal of Machine Learning Research, 12(Jul):2121--2159, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. X. Geng, H. Zhang, J. Bian, and T. Chua. Learning image and user features for recommendation in social networks. In ICCV, pages 4274--4282, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Generative adversarial nets. In NIPS, pages 2672--2680, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. I. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial examples. In ICLR, 2015.Google ScholarGoogle Scholar
  16. X. He and T.-S. Chua. Neural factorization machines for sparse predictive analytics. In SIGIR, pages 355--364, 2017. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua. Neural collaborative filtering. In WWW, pages 173--182, 2017. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. X. He, H. Zhang, M.-Y. Kan, and T.-S. Chua. Fast matrix factorization for online recommendation with implicit feedback. In SIGIR, pages 549--558, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. S. Kabbur, X. Ning, and G. Karypis. Fism: Factored item similarity models for top-n recommender systems. In KDD, pages 659--667, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Y. Koren. Factorization meets the neighborhood: A multifaceted collaborative filtering model. In KDD, pages 426--434, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. H. Li. Learning to Rank for Information Retrieval and Natural Language Processing, Second Edition. Synthesis Lectures on Human Language Technologies. Morgan & Claypool Publishers, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. J. Li, P. Ren, Z. Chen, Z. Ren, T. Lian, and J. Ma. Neural attentive session-based recommendation. In CIKM, pages 1419--1428, 2017. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. D. Liang, L. Charlin, J. McInerney, and D. M. Blei. Modeling user exposure in recommendation. In WWW, pages 951--961, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. T. Miyato, A. M. Dai, and I. Goodfellow. Adversarial training methods for semi-supervised text classification. In ICLR, 2017.Google ScholarGoogle Scholar
  25. S. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard. Universal adversarial perturbations. In CVPR, pages 86--94, 2017.Google ScholarGoogle ScholarCross RefCross Ref
  26. S. Park, J.-K. Park, S.-J. Shin, and I.-C. Moon. Adversarial dropout for supervised and semi-supervised learning. In AAAI, 2018.Google ScholarGoogle ScholarCross RefCross Ref
  27. S. Rendle. Factorization machines. In ICDM, pages 995--1000, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme. Bpr: Bayesian personalized ranking from implicit feedback. In UAI, pages 452--461, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Y. Shan, T. R. Hoens, J. Jiao, H. Wang, D. Yu, and J. Mao. Deep crossing: Web-scale modeling without manually crafted combinatorial features. In KDD, pages 255--262, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus. Intriguing properties of neural networks. In ICLR, 2014.Google ScholarGoogle Scholar
  31. J. Wang, L. Yu, W. Zhang, Y. Gong, Y. Xu, B. Wang, P. Zhang, and D. Zhang. Irgan: A minimax game for unifying generative and discriminative information retrieval models. In SIGIR, pages 515--524, 2017. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. X. Wang, X. He, L. Nie, and T.-S. Chua. Item silk road: Recommending items from information domains to social users. In SIGIR, pages 185--194, 2017. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Z. Wang, Z. Jiang, Z. Ren, J. Tang, and D. Yin. A path-constrained framework for discriminating substitutable and complementary products in e-commerce. In WSDM, pages 619--627, 2018. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Y. Wu, D. Bamman, and S. Russell. Adversarial training for relation extraction. In ACL, pages 1778--1783, 2017.Google ScholarGoogle ScholarCross RefCross Ref
  35. Y. Wu, C. DuBois, A. X. Zheng, and M. Ester. Collaborative denoising auto-encoders for top-n recommender systems. In WSDM, pages 153--162, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. C. Yang, L. Bai, C. Zhang, Q. Yuan, and J. Han. Bridging collaborative filtering and semi-supervised learning: A neural approach for poi recommendation. In KDD, pages 1245--1254, 2017. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. W. Yu, H. Zhang, X. He, X. Chen, L. Xiong, and Z. Qin. Aesthetic-based clothing recommendation. In WWW, pages 649--658, 2018. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. F. Yuan, G. Guo, J. M. Jose, L. Chen, H. Yu, and W. Zhang. Lambdafm: Learning optimal ranking with factorization machines using lambda surrogates. In CIKM, pages 227--236, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. F. Zhang, N. J. Yuan, D. Lian, X. Xie, and W.-Y. Ma. Collaborative knowledge base embedding for recommender systems. In KDD, pages 353--362, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. H. Zhang, F. Shen, W. Liu, X. He, H. Luan, and T.-S. Chua. Discrete collaborative filtering. In SIGIR, pages 325--334, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Y. Zhang, Q. Ai, X. Chen, and W. B. Croft. Joint representation learning for top-n recommendation with heterogeneous information sources. In CIKM, pages 1449--1458, 2017. Google ScholarGoogle ScholarDigital LibraryDigital Library
  1. Adversarial Personalized Ranking for Recommendation

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      SIGIR '18: The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval
      June 2018
      1509 pages
      ISBN:9781450356572
      DOI:10.1145/3209978

      Copyright © 2018 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 27 June 2018

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      SIGIR '18 Paper Acceptance Rate86of409submissions,21%Overall Acceptance Rate792of3,983submissions,20%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader