skip to main content
research-article

Combination Forecasting Reversion Strategy for Online Portfolio Selection

Published:22 June 2018Publication History
Skip Abstract Section

Abstract

Machine learning and artificial intelligence techniques have been applied to construct online portfolio selection strategies recently. A popular and state-of-the-art family of strategies is to explore the reversion phenomenon through online learning algorithms and statistical prediction models. Despite gaining promising results on some benchmark datasets, these strategies often adopt a single model based on a selection criterion (e.g., breakdown point) for predicting future price. However, such model selection is often unstable and may cause unnecessarily high variability in the final estimation, leading to poor prediction performance in real datasets and thus non-optimal portfolios. To overcome the drawbacks, in this article, we propose to exploit the reversion phenomenon by using combination forecasting estimators and design a novel online portfolio selection strategy, named Combination Forecasting Reversion (CFR), which outputs optimal portfolios based on the improved reversion estimator. We further present two efficient CFR implementations based on online Newton step (ONS) and online gradient descent (OGD) algorithms, respectively, and theoretically analyze their regret bounds, which guarantee that the online CFR model performs as well as the best CFR model in hindsight. We evaluate the proposed algorithms on various real markets with extensive experiments. Empirical results show that CFR can effectively overcome the drawbacks of existing reversion strategies and achieve the state-of-the-art performance.

Skip Supplemental Material Section

Supplemental Material

References

  1. Amit Agarwal, Elad Hazan, Satyen Kale, and Robert E. Schapire. 2006. Algorithms for portfolio management based on the Newton method. In Proceedings of the International Conference on Machine Learning. 9--16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Oren Anava, Elad Hazan, Shie Mannor, and Ohad Shamir. 2013. Online learning for time series prediction. J. Mach. Learn. Res. 30, 172--184.Google ScholarGoogle Scholar
  3. J. Scott Armstrong. 2001. Combining forecasts. In Principles of Forecasting. International Series in Operations Research and Management Science, Vol. 30. Springer. 417--439.Google ScholarGoogle Scholar
  4. N. Balamurali and S. Sivarajasingam. 2011. Dynamic relationship between stock prices and exchange rates: Evidence from Sri Lanka. Int. J. Theor. Appl. Finan. 9, 8, 1377.Google ScholarGoogle Scholar
  5. J. M. Bates and C. W. J. Granger. 1969. The combination of forecasts. J. Operat. Res. Soc. 20, 4, 451--468.Google ScholarGoogle ScholarCross RefCross Ref
  6. Avrim Blum and Adam Kalai. 1999. Universal portfolios with and without transaction costs. Mach. Learn. 35, 3, 193--205. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. A. Borodin, R. El-Yaniv, and V. Gogan. 2011. Can we learn to beat the best stock? J. Artific. Intell. Res. 21, 579--594. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. S. Boyd and L. Vandenberghe. 2004. Convex Optimization. Cambridge University Press, Cambridge, UK. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Leo Breiman. 1996. Bagging predictors. Mach. Learn. 24, 2, 123--140. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Leo Breiman. 1996. Stacked regressions. Mach. Learn. 24, 1, 49--64. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Nicolo Cesa-Bianchi and Gabor Lugosi. 2006. Prediction, Learning, and Games. Cambridge University Press, Cambridge, UK. Google ScholarGoogle Scholar
  12. R. Chandrasekaran and A. Tamir. 1989. Open questions concerning Weiszfeld’s algorithm for the Fermat-Weber location problem. Math. Program. 44, 1, 293--295.Google ScholarGoogle ScholarCross RefCross Ref
  13. Gerda Claeskens, Jan R. Magnus, Andrey L. Vasnev, and Wendun Wang. 2016. The forecast combination puzzle: A simple theoretical explanation. Int. J. Forecast. 32, 3, 754--762.Google ScholarGoogle ScholarCross RefCross Ref
  14. Thomas M. Cover. 1991. Universal portfolios. Math. Finance 1, 1, 1--29.Google ScholarGoogle ScholarCross RefCross Ref
  15. Thomas M. Cover and Erik Ordentlich. 1996. Universal portfolios with side information. IEEE Trans. Info. Theory 42, 2, 348--363. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Thomas M. Cover and Joy A. Thomas. 1991. Elements of Information Theory. Wiley, New York, NY. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev-Shwartz, and Yoram Singer. 2006. Online passive-aggressive algorithms. J. Mach. Learn. Res. 7, 3, 551--585. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Thomas G. Dietterich. 2000. Ensemble methods in machine learning. In Multiple Classifier Systems. Lecture Notes in Computer Science, Vol. 1857. Springer, 1--15. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Harris Drucker. 1997. Improving regressors using boosting techniques. In Proceedings of the 14th International Conference on Machine Learning. 107--115. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. John Duchi, Shai ShalevShwartz, Yoram Singer, and Tushar Chandra. 2008. Efficient projections onto the -ball for learning in high dimensions. In Proceedings of the International Conference on Machine Learning. 272--279. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Nigel Duffy and David Helmbold. 2002. Boosting methods for regression. Mach. Learn. 47, 2--3, 153--200. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Alexei A. Gaivoronski and Fabio Stella. 2000. Stochastic nonstationary optimization for finding universal portfolios. Ann. Operat. Res. 100, 1--4, 165--188.Google ScholarGoogle ScholarCross RefCross Ref
  23. Richard Grinold and Ronald Kahn. 1999. Active Portfolio Management: A Quantitative Approach for Producing Superior Returns and Controlling Risk. McGraw-Hill, New York, NY.Google ScholarGoogle Scholar
  24. László Györfi, Gábor Lugosi, and Frederic Udina. 2006. Nonparametric kernel-based sequential investment strategies. Math. Finance 16, 2, 337--357.Google ScholarGoogle ScholarCross RefCross Ref
  25. László Györfi, Frederic Udina, and Harro Walk. 2008. Nonparametric nearest neighbor based empirical portfolio selection strategies. Int. Math. J. Stochast. Methods Models 26, 2, 145--157.Google ScholarGoogle Scholar
  26. Elad Hazan, Amit Agarwal, and Satyen Kale. 2007. Logarithmic regret algorithms for online convex optimization. Mach. Learn. 69, 2--3, 169--192. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Elad Hazan, Adam Tauman Kalai, Satyen Kale, and Amit Agarwal. 2006. Logarithmic regret algorithms for online convex optimization. In Proceedings of the Annual Conference on Learning Theory, Vol. 4005. 499--513. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. David P. Helmbold, Robert E. Schapire, Yoram Singer, and Manfred K. Warmuth. 1996. On-line portfolio selection using multiplicative updates. In Proceedings of the 13th International Conference on Machine Learning. 243--251. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Dingjiang Huang, Junlong Zhou, Bin Li, Steven C. H. Hoi, and Shuigeng Zhou. 2013. Robust median reversion strategy for on-line portfolio selection. In Proceedings of the International Joint Conference on Artificial Intelligence. 2006--2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Rob J. Hyndman, Roman A. Ahmed, George Athanasopoulos, and Han Lin Shang. 2011. Optimal combination forecasts for hierarchical time series. Comput. Stat. Data Anal. 55, 9, 2579--2589. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. J. L. Kelly Jr. 1956. A new interpretation of information rate. AT8T Tech. J. 35, 917--926.Google ScholarGoogle Scholar
  32. Fusun Kucukbay and Ceyhun Araz. 2016. Portfolio selection problem: A comparison of fuzzy goal programming and linear physical programming. Eur. J. Oper. Res. 6, 2, 121--128.Google ScholarGoogle Scholar
  33. Bin Li. 2015. Online Portfolio Selection: Principles and Algorithms. CRC Press, Boca Raton, FL.Google ScholarGoogle Scholar
  34. Bin Li and Steven C. H. Hoi. 2012. On-line portfolio selection with moving average reversion. In Proceedings of the International Conference on Machine Learning. 563--570. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Bin Li and Steven C. H. Hoi. 2012. Online portfolio selection: A survey. ACM Comput. Surveys 46, 3, 1--36. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Bin Li, Steven C. H. Hoi, and Vivekanand Gopalkrishnan. 2011. CORN: Correlation-driven nonparametric learning approach for portfolio selection. ACM Trans. Intell. Syst. Technol. 2, 3, 1--29. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Bin Li, Steven C. H. Hoi, Doyen Sahoo, and Zhi Yong Liu. 2015. Moving average reversion strategy for on-line portfolio selection. Artific. Intell. 222, 1, 104--123. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Bin Li, Steven C. H. Hoi, Peilin Zhao, and Vivekanand Gopalkrishnan. 2013. Confidence weighted mean reversion strategy for online portfolio selection. ACM Trans. Knowl. Discov. Data 7, 1, 1--38. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Bin Li, Doyen Sahoo, and Steven C. H. Hoi. 2016. OLPS: A toolbox for on-line portfolio selection. J. Mach. Learn. Res. 17, 35, 1--5. http://jmlr.org/papers/v17/15-317.html. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Bin Li, Jialei Wang, Dingjiang Huang, and Steven C. H. Hoi. 2017. Transaction cost optimization for online portfolio selection. Quant. Finance 2017, 1--14.Google ScholarGoogle Scholar
  41. Bin Li, Peilin Zhao, Steven C. H. Hoi, and Vivekanand Gopalkrishnan. 2012. PAMR: Passive aggressive mean reversion strategy for portfolio selection. Mach. Learn. 87, 2, 221--258. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Chenghao Liu, Steven C. H. Hoi, Peilin Zhao, and Jianling Sun. 2016. Online ARIMA algorithms for time series prediction. In Proceedings of the 30th AAAI Conference on Artificial Intelligence. 1867--1873. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Leandro L. Minku, Allan P. White, and Xin Yao. 2010. The impact of diversity on online ensemble learning in the presence of concept drift. IEEE Trans. Knowl. Data Eng. 22, 5, 730--742. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. John Moody, Lizhong Wu, Yuansong Liao, and Matthew Saffell. 1998. Performance functions and reinforcement learning for trading systems and portfolios. J. Forecast. 17, 5--6, 441--470.Google ScholarGoogle ScholarCross RefCross Ref
  45. N. C. Oza. 2006. Online bagging and boosting. In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, Vol. 3. 2340--2345.Google ScholarGoogle Scholar
  46. William F. Sharpe. 1963. A simplified model for portfolio analysis. Manage. Sci. 9, 2, 277--293. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. William F. Sharpe. 1994. The sharpe ratio. J. Portfolio Manage. 21, 1, 49--58.Google ScholarGoogle ScholarCross RefCross Ref
  48. Weiwei Shen and Jun Wang. 2015. Transaction costs-aware portfolio optimization via fast Lowner-John ellipsoid approximation. In Proceedings of the 29th AAAI Conference on Artificial Intelligence. 1854--1860. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Weiwei Shen and Jun Wang. 2017. Portfolio selection via subset resampling. In Proceedings of the 31st AAAI Conference on Artificial Intelligence. 1517--1523.Google ScholarGoogle Scholar
  50. Christopher G. Small. 1990. A survey of multidimensional medians. Int. Stat. Rev. 58, 3, 263--277.Google ScholarGoogle ScholarCross RefCross Ref
  51. Symone Soares, Carlos Henggeler Antunes, and Arajo Rui. 2013. Comparison of a genetic algorithm and simulated annealing for automatic neural network ensemble development. Neurocomputing 121, 18, 498--511. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Edward O. Thorp. 1975. Portfolio choice and the Kelly criterion. In Stochastic Optimization Models in Finance. Elsevier, 599--619.Google ScholarGoogle Scholar
  53. Allan Timmermann. 2006. Forecast combinations. In Handbook of Economic Forecasting. Elsevier, 135--196.Google ScholarGoogle Scholar
  54. Theodoros Tsagaris, Ajay Jasra, and Niall M. Adams. 2012. Robust and adaptive algorithms for online portfolio. Quant. Finance 12, 11, 1651--1662.Google ScholarGoogle ScholarCross RefCross Ref
  55. William W. S. Wei and Christopher Chatfield. 1996. Some MINITAB and S-PLUS commands. In The Analysis of Time Series: An Introduction. CRC Texts in Statistical Science. Chapman 8 Hall/CRC Press, Boca Raton, FL, 303--304.Google ScholarGoogle Scholar
  56. Hongke Zhao, Qi Liu, Guifeng Wang, Yong Ge, and Enhong Chen. 2016. Portfolio selections in P2P lending: A multi-objective perspective. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2075--2084. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Hongke Zhao, Hefu Zhang, Yong Ge, Qi Liu, Enhong Chen, Huayu Li, and Le Wu. 2017. Tracking the dynamics in crowdfunding. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 625--634. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Zhi Hua Zhou. 2012. Ensemble Methods: Foundations and Algorithms. CRC Press, Boca Raton, FL. Google ScholarGoogle ScholarCross RefCross Ref
  59. Martin Zinkevich. 2003. Online convex programming and generalized infinitesimal gradient ascent. In Proceedings of the International Conference on Machine Learning. 928--936. Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. Hui Zou and Yuhong Yang. 2004. Combining time series models for forecasting. Int. J. Forecast. 20, 1, 69--84.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Combination Forecasting Reversion Strategy for Online Portfolio Selection

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Intelligent Systems and Technology
          ACM Transactions on Intelligent Systems and Technology  Volume 9, Issue 5
          Research Survey and Regular Papers
          September 2018
          274 pages
          ISSN:2157-6904
          EISSN:2157-6912
          DOI:10.1145/3210369
          Issue’s Table of Contents

          Copyright © 2018 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 22 June 2018
          • Accepted: 1 March 2018
          • Revised: 1 February 2018
          • Received: 1 September 2017
          Published in tist Volume 9, Issue 5

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader