skip to main content
10.1145/3170427.3188479acmconferencesArticle/Chapter ViewAbstractPublication PageschiConference Proceedingsconference-collections
abstract

Levity: A Virtual Reality System that Responds to Cognitive Load

Authors Info & Claims
Published:20 April 2018Publication History

ABSTRACT

This paper presents the ongoing development of a proof-of-concept, adaptive system that uses a neurocognitive signal to facilitate efficient performance in a Virtual Reality visual search task. The Levity system measures and interactively adjusts the display of a visual array during a visual search task based on the user's level of cognitive load, measured with a 16-channel EEG device. Future developments will validate the system and evaluate its ability to improve search efficiency by detecting and adapting to a user's cognitive demands.

Skip Supplemental Material Section

Supplemental Material

lbw1139-file3.mp4

mp4

5.1 MB

References

  1. Jackson Beatty. 1982. Task-evoked pupillary responses, processing load, and the structure of processing resources. Psychological Bulletin 91, 2: 276--292.Google ScholarGoogle ScholarCross RefCross Ref
  2. Roland Brunken, Jan L. Plass, and Detlev Leutner. 2003. Direct Measurement of Cognitive Load in Multimedia Learning. Educational Psychologist 38, 1: 53--61.Google ScholarGoogle ScholarCross RefCross Ref
  3. Erik Van der Burg, Christian N. L. Olivers, Adelbert W. Bronkhorst, and Jan Theeuwes. 2008. Pip and Pop: Nonspatial Auditory Signals Improve Spatial Visual Search. Journal of Experimental Psychology: Human Perception and Performance 34, 5: 1053--1065.Google ScholarGoogle ScholarCross RefCross Ref
  4. B. H. Cho, J. M. Lee, J. H. Ku, D. P. Jang, J. S. Kim, I. Y. Kim, J. H. Lee, and S. I. Kim. 2002. Attention Enhancement System using virtual reality and EEG biofeedback. July 2014: 156--163. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. J. Duncan and G. W. Humphreys. 1989. Visual-Search and Stimulus Similarity. Psychological Review 96, 3: 433--458.Google ScholarGoogle ScholarCross RefCross Ref
  6. Alan Gevins and Michael E. Smith. 2000. Neurophysiological measures of working memory and individual differences in cognitive ability and cognitive style. Cerebral cortex (New York, N.Y.: 1991) 10, 9: 829--839.Google ScholarGoogle Scholar
  7. W. Klimesch, H. Schimke, and G. Pfurtscheller. 1993. Alpha frequency, cognitive load and memory performance. Brain Topography 5, 3: 241--251.Google ScholarGoogle ScholarCross RefCross Ref
  8. Wolfgang Klimesch. 1999. EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Research Reviews 29, 2-3: 169--195.Google ScholarGoogle ScholarCross RefCross Ref
  9. A. Lecuyer, F. Lotte, R. B. Reilly, R. Leeb, M. Hirose, and M. Slater. 2008. Brain-Computer Interfaces, Virtual Reality, and Videogames. Computer 41, 10: 66--72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Robert Leeb, Doron Friedman, Gernot R. Müller-Putz, Reinhold Scherer, Mel Slater, and Gert Pfurtscheller. 2007. Self-paced (asynchronous) BCI control of a wheelchair in virtual environments: A case study with a tetraplegic. Computational Intelligence and Neuroscience 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Fred G. W. C. Paas, Jeroen J. G. van Merriënboer, and Jos J. Adam. 1994. Measurement of Cognitive Load in Instructional Research. Perceptual and Motor Skills 79, 1: 419--430.Google ScholarGoogle ScholarCross RefCross Ref
  12. Paul Sauseng and Wolfgang Klimesch. 2008. What does phase information of oscillatory brain activity tell us about cognitive processes? Neuroscience and Biobehavioral Reviews 32, 5: 1001--1013.Google ScholarGoogle ScholarCross RefCross Ref
  13. Richard M. Shiffrin and Walter Schneider. 1977. Controlled and automatic human information processing: II. Perceptual learning, automatic attending and a general theory. Psychological Review 84, 2: 127--190.Google ScholarGoogle ScholarCross RefCross Ref
  14. J. Sweller. 1988. Cognitive load during problem solving: Effects on learning. Cognitive Science 12, 2: 257--285.Google ScholarGoogle ScholarCross RefCross Ref
  15. Karl Halvor Teigen. 1994. Yerkes-Dodson: A Law for All Seasons. Theory & Psychology 4, 4: 525--547.Google ScholarGoogle ScholarCross RefCross Ref
  16. Junichi Tsurukawa, Mohammed Al-Sada, and Tatsuo Nakajima. 2015. Filtering Visual Information for Reducing Visual Cognitive Load. Proceedings of the 2015 ACM International Symposium on Wearable Computers: 33--36. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Athanasios Vourvopoulos, Sergi Bermudez i Badia, and Fotis Liarokapis. 2017. EEG correlates of video game experience and user profile in motor-imagery-based brain-computer interaction. Visual Computer 33, 4: 533--546. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Jonathan R. Wolpaw, Niels Birbaumer, Dennis J. McFarland, Gert Pfurtscheller, and Theresa M. Vaughan. 2002. Brain-computer interfaces for communication and control. Clinical neurophysiology: official journal of the International Federation of Clinical Neurophysiology 113, 6: 767--91.Google ScholarGoogle Scholar
  19. Qi Bin Zhao, Li Qing Zhang, and Andrzej Cichocki. 2009. EEG-based asynchronous BCI control of a car in 3D virtual reality environments. Chinese Science Bulletin 54, 1: 78--87.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Levity: A Virtual Reality System that Responds to Cognitive Load

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      CHI EA '18: Extended Abstracts of the 2018 CHI Conference on Human Factors in Computing Systems
      April 2018
      3155 pages
      ISBN:9781450356213
      DOI:10.1145/3170427

      Copyright © 2018 Owner/Author

      Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 20 April 2018

      Check for updates

      Qualifiers

      • abstract

      Acceptance Rates

      CHI EA '18 Paper Acceptance Rate1,208of3,955submissions,31%Overall Acceptance Rate6,164of23,696submissions,26%

      Upcoming Conference

      CHI '24
      CHI Conference on Human Factors in Computing Systems
      May 11 - 16, 2024
      Honolulu , HI , USA

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader