skip to main content
10.1145/3184558.3186236acmotherconferencesArticle/Chapter ViewAbstractPublication PageswwwConference Proceedingsconference-collections
research-article
Free Access

COEVOLVE: A Joint Point Process Model for Information Diffusion and Network Co-evolution

Authors Info & Claims
Published:23 April 2018Publication History

ABSTRACT

Information diffusion in online social networks is affected by the underlying network topology, but it also has the power to change it. Online users are constantly creating new links when they are exposed to new information sources, and in turn these links are alternating the way information spreads. However, these two highly intertwined stochastic processes---information diffusion and network evolution---have been typically studied separately, ignoring their co-evolutionary dynamics. In this work, we propose a temporal point process model, COEVOLVE, for such joint dynamics, allowing the intensity of one process to be modulated by that of the other. The model allows us to efficiently simulate interleaved diffusion and network events, and generate traces obeying common diffusion and network patterns observed in real-world networks. Moreover, we develop a convex optimization framework to learn the parameters of the model from historical diffusion and network evolution traces. Experiments in both synthetic data and real data gathered from Twitter show that our model provides a good fit to the data as well as more accurate predictions than alternatives.

References

  1. D. Antoniades and C. Dovrolis. Co-evolutionary dynamics in social networks: A case study of twitter. arXiv preprint arXiv:1309.6001, 2013.Google ScholarGoogle Scholar
  2. L. Backstrom, P. Boldi, M. Rosa, J. Ugander, and S. Vigna. Four degrees of separation. In Proceedings of the 4th Annual ACM Web Science Conference, pages 33--42, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-mat: A recursive model for graph mining. Computer Science Department, page 541, 2004.Google ScholarGoogle Scholar
  4. J. Cheng, L. Adamic, P. A. Dow, J. M. Kleinberg, and J. Leskovec. Can cascades be predicted In Proceedings of the 23rd international conference on World wide web, pages 925--936, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. N. Du, L. Song, M. Gomez-Rodriguez, and H. Zha. Scalable influence estimation in continuous-time diffusion networks. In Advances in Neural Information Processing Systems 26, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. P. Erdos and A. Rényi. On the evolution of random graphs. Publ. Math. Inst. Hungar. Acad. Sci, 5:17--61, 1960.Google ScholarGoogle Scholar
  7. M. Farajtabar, N. Du, M. Gomez-Rodriguez, I. Valera, H. Zha, and L. Song. Shaping social activity by incentivizing users. In Advances in Neural Information Processing Systems (NIPS), 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. M. Farajtabar, Y. Wang, M. Gomez-Rodriguez, S. Li, and H. Zha. Coevolve: A joint point process model for information diffusion and network evolution. Journal of Machine Learning Research, 18:1--49, 2017. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. M. Farajtabar, J. Yang, X. Ye, H. Xu, R. Trivedi, E. Khalil, S. Li, L. Song, and H. Zha. Fake news mitigation via point process based intervention. arXiv preprint arXiv:1703.07823, 2017.Google ScholarGoogle Scholar
  10. M. Farajtabar, X. Ye, S. Harati, L. Song, and H. Zha. Multistage campaigning in social networks. In Advances in Neural Information Processing Systems, pages 4718--4726, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. S. Goel, D. J. Watts, and D. G. Goldstein. The structure of online diffusion networks. In Proceedings of the 13th ACM conference on electronic commerce, pages 623--638, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. M. Gomez-Rodriguez, D. Balduzzi, and B. Schölkopf. Uncovering the temporal dynamics of diffusion networks. In Proceedings of the International Conference on Machine Learning, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. M. Gomez-Rodriguez, J. Leskovec, and A. Krause. Inferring networks of diffusion and influence. In Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 1019--1028. ACM, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. M. Granovetter. The strength of weak ties. American journal of sociology, pages 1360--1380, 1973.Google ScholarGoogle Scholar
  15. S. A. Hosseini, K. Alizadeh, A. Khodadadi, A. Arabzadeh, M. Farajtabar, H. Zha, and H. R. Rabiee. Recurrent poisson factorization for temporal recommendation. arXiv preprint arXiv:1703.01442, 2017. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. D. Hunter, P. Smyth, D. Q. Vu, and A. U. Asuncion. Dynamic egocentric models for citation networks. In Proceedings of the 28th International Conference on Machine Learning, pages 857--864, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. T. Iwata, A. Shah, and Z. Ghahramani. Discovering latent influence in online social activities via shared cascade poisson processes. In Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 266--274. ACM, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. M. R. Karimi, E. Tavakoli, M. Farajtabar, L. Song, and M. Gomez-Rodriguez. Smart broadcasting: Do you want to be seen arXiv preprint arXiv:1605.06855, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. H. Kwak, C. Lee, H. Park, and S. Moon. What is Twitter, a social network or a news media In Proceedings of the 19th International Conference on World Wide Web, pages 591--600, New York, NY, USA, 2010. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. J. Leskovec, L. Backstrom, R. Kumar, and A. Tomkins. Microscopic evolution of social networks. In Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 462--470. ACM, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos, and Z. Ghahramani. Kronecker graphs: An approach to modeling networks. Journal of Machine Learning Research, 11(Feb):985--1042, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. J. Leskovec, J. Kleinberg, and C. Faloutsos. Graphs over time: densification laws, shrinking diameters and possible explanations. In Proceedings of the eleventh ACM SIGKDD international conference on Knowledge discovery in data mining, pages 177--187. ACM, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. S. W. Linderman and R. P. Adams. Discovering latent network structure in point process data. In International Conference on Machine Learning (ICML), 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. T. J. Liniger. Multivariate Hawkes Processes. PhD thesis, Swiss Federal Institute of Technology Zurich, 2009.Google ScholarGoogle Scholar
  25. S. A. Myers and J. Leskovec. The bursty dynamics of the twitter information network. In 23rd International Conference on the World Wide Web, pages 913--924, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. D. M. Romero and J. Kleinberg. The directed closure process in hybrid social-information networks, with an analysis of link formation on twitter. In ICWSM, 2010.Google ScholarGoogle Scholar
  27. B. Tabibian, I. Valera, M. Farajtabar, L. Song, B. Schölkopf, and M. Gomez-Rodriguez. Distilling information reliability and source trustworthiness from digital traces. arXiv preprint arXiv:1610.07472, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. L. Tran, M. Farajtabar, L. Song, and H. Zha. Netcodec: Community detection from individual activities. In SDM, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  29. J. Ugander, L. Backstrom, and J. Kleinberg. Subgraph frequencies: Mapping the empirical and extremal geography of large graph collections. In Proceedings of the 22nd international conference on World Wide Web, pages 1307--1318. International World Wide Web Conferences Steering Committee, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. D. Q. Vu, D. Hunter, P. Smyth, and A. U. Asuncion. Continuous-time regression models for longitudinal networks. In Advances in Neural Information Processing Systems, pages 2492--2500, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. D. J. Watts and S. H. Strogatz. Collective dynamics of small-world networks. Nature, 393(6684):440--442, June 1998.Google ScholarGoogle ScholarCross RefCross Ref
  32. L. Weng, J. Ratkiewicz, N. Perra, B. Gonccalves, C. Castillo, F. Bonchi, R. Schifanella, F. Menczer, and A. Flammini. The role of information diffusion in the evolution of social networks. In Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 356--364. ACM, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. A. Zarezade, A. Khodadadi, M. Farajtabar, H. R. Rabiee, and H. Zha. Correlated cascades: Compete or cooperate. arXiv preprint arXiv:1510.00936, 2015.Google ScholarGoogle Scholar
  34. K. Zhou, H. Zha, and L. Song. Learning triggering kernels for multi-dimensional hawkes processes. In International Conference on Machine Learning (ICML), 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. COEVOLVE: A Joint Point Process Model for Information Diffusion and Network Co-evolution

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in
          • Published in

            cover image ACM Other conferences
            WWW '18: Companion Proceedings of the The Web Conference 2018
            April 2018
            2023 pages
            ISBN:9781450356404

            Copyright © 2018 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            International World Wide Web Conferences Steering Committee

            Republic and Canton of Geneva, Switzerland

            Publication History

            • Published: 23 April 2018

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article

            Acceptance Rates

            Overall Acceptance Rate1,899of8,196submissions,23%

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader

          HTML Format

          View this article in HTML Format .

          View HTML Format