skip to main content
research-article
Open Access

Making machine learning robust against adversarial inputs

Published:25 June 2018Publication History
Skip Abstract Section

Abstract

Such inputs distort how machine-learning-based systems are able to function in the world as it is.

References

  1. Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., Rieck, K., and Siemens, C.E.R.T. Drebin: Effective and explainable detection of Android malware in your pocket. In Proceedings of the NDSS Symposium (San Diego, CA, Feb.). Internet Society, Reston, VA, 2014, 23--26.Google ScholarGoogle Scholar
  2. Barreno, M., Nelson, B., Sears, R., Joseph, A.D., and Tygar, J.D. Can machine learning be secure? In Proceedings of the 2006 ACM Symposium on Information, Computer and Communications Security (Taipei, Taiwan, Mar. 21--24). ACM Press, New York, 2006, 16--25. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bolton, R.J. and Hand, D.J. Statistical fraud detection: A review. Statistical Science 17, 3 (2002), 235--249.Google ScholarGoogle ScholarCross RefCross Ref
  4. Carlini, N. and Wagner, D. Towards evaluating the robustness of neural networks. arXiv preprint, 2016; https://arxiv.org/pdf/1608.04644.pdfGoogle ScholarGoogle Scholar
  5. Dang, H., Yue, H., and Chang, E.C. Evading classifier in the dark: Guiding unpredictable morphing using binary-output blackboxes. arXiv preprint, 2017; https://arxiv.org/pdf/1705.07535.pdf Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Glorot, X., Bordes, A., and Bengio, Y. Deep sparse rectifier neural networks. In Proceedings of the 14th International Conference on Artificial Intelligence and Statistics (Ft. Lauderdale, FL, Apr. 11--13, 2011), 315--323.Google ScholarGoogle Scholar
  7. Goodfellow, I., Bengio, Y., and Courville, A. Deep Learning. MIT Press, Cambridge, MA, 2016; http://www.deeplearningbook.org/ Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Goodfellow, I.J., Bulatov, Y., Ibarz, J., Arnoud, S., and Shet, V. Multi-digit number recognition from Street View imagery using deep convolutional neural networks. In Proceedings of the International Conference on Learning Representations (Banff, Canada, Apr. 14--16, 2014).Google ScholarGoogle Scholar
  9. Goodfellow, I.J., Shlens, J., and Szegedy, C. Explaining and harnessing adversarial examples. arXiv preprint, 2014; https://arxiv.org/pdf/1412.6572.pdfGoogle ScholarGoogle Scholar
  10. Grosse, K., Papernot, N., Manoharan, P., Backes, M., and McDaniel, P. Adversarial perturbations against deep neural networks for malware classification. In Proceedings of the European Symposium on Research in Computer Security (Oslo, Norway, 2017).Google ScholarGoogle Scholar
  11. Hinton, G., Vinyals, O., and Dean, J. Distilling the knowledge in a neural network. arXiv preprint, 2015; https://arxiv.org/abs/1503.02531Google ScholarGoogle Scholar
  12. Huang, S., Papernot, N., Goodfellow, I., Duan, Y., and Abbeel, P. Adversarial attacks on neural network policies. arXiv preprint, 2017; https://arxiv.org/abs/1702.02284Google ScholarGoogle Scholar
  13. Huang, A., Kwiatkowska, M., Wang, S., and Wu, M. Safety verification of deep neural networks. In Proceedings of the International Conference on Computer-Aided Verification (2016); https://link.springer.com/chapter/10.1007/978-3-319-63387-9_1Google ScholarGoogle Scholar
  14. Jarrett, K., Kavukcuoglu, K., Ranzato, M.A., and LeCun, Y. What is the best multi-stage architecture for object recognition? In Proceedings of the 12th IEEE International Conference on Computer Vision (Kyoto, Japan, Sept. 27--Oct. 4). IEEE Press, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  15. Katz, G., Barrett, C., Dill, D., Julian, K., and Kochenderfer, M. Reluplex: An efficient SMT solver for verifying deep neural networks. In Proceedings of the International Conference on Computer-Aided Verification. Springer, Cham, 2017, 97--117.Google ScholarGoogle ScholarCross RefCross Ref
  16. Kurakin, A., Goodfellow, I., and Bengio, S. Adversarial examples in the physical world. In Proceedings of the International Conference on Learning Representations (2017); https://arxiv.org/abs/1607.02533Google ScholarGoogle Scholar
  17. Murphy, K.P. Machine Learning: A Probabilistic Perspective. MIT Press, Cambridge, MA, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Nair, V. and Hinton, G.E. Rectified linear units improve restricted Boltzmann machines. In Proceedings of the International Conference on Machine Learning (Haifa, Israel, June 21--24, 2010). Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Papernot, N., Goodfellow, I., Sheatsley, R., Feinman, R., and McDaniel, P. CleverHans v2.1.0: An adversarial machine learning library; https://github.com/tensorflow/cleverhansGoogle ScholarGoogle Scholar
  20. Papernot, N., McDaniel, P., and Goodfellow, I. Transferability in machine learning: From phenomena to black-box attacks using adversarial samples. arXiv preprint, 2016; https://arxiv.org/abs/1605.07277Google ScholarGoogle Scholar
  21. Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., and Swami, A. Practical black-box attacks against deep learning systems using adversarial examples. In Proceedings of the ACM Asia Conference on Computer and Communications Security (Abu Dhabi, UAE). ACM Press, New York, 2017. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z.B., and Swami, A. The limitations of deep learning in adversarial settings. In Proceedings of the 2016 IEEE European Symposium on Security and Privacy (Saarbrücken, Germany, Mar. 21--24). IEEE Press, 2016, 372--387.Google ScholarGoogle ScholarCross RefCross Ref
  23. Papernot, N., McDaniel, P., Sinha, A., and Wellman, M. Towards the science of security and privacy in machine learning. In Proceedings of the Third IEEE European Symposium on Security and Privacy (London, U.K.); https://arxiv.org/abs/1611.03814Google ScholarGoogle Scholar
  24. Papernot, N., McDaniel, P., Wu, X., Jha, S., and Swami, A. Distillation as a defense to adversarial perturbations against deep neural networks. In Proceedings of the 37th IEEE Symposium on Security and Privacy (San Jose, CA, May 23--25). IEEE Press, 2016, 582--597.Google ScholarGoogle ScholarCross RefCross Ref
  25. Russell, S. and Norvig, P. Artificial Intelligence: A Modern Approach. Prentice-Hall, Englewood Cliffs, NJ, 1995, 25--27. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M. et al. Mastering the game of Go with deep neural networks and tree search. Nature 529, 7587 (2016), 484--489.Google ScholarGoogle ScholarCross RefCross Ref
  27. Stallkamp, J., Schlipsing, M., Salmen, J., and Igel, C. Man vs. computer: Benchmarking machine learning algorithms for traffic sign recognition. Neural Networks (2012) Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, C., Vanhoucke, V., and Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE Press, 2015, 1--9.Google ScholarGoogle ScholarCross RefCross Ref
  29. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna, Z. Rethinking the Inception architecture for computer vision. ArXiv e-prints, Dec. 2015; https://arxiv.org/abs/1512.00567Google ScholarGoogle Scholar
  30. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., and Fergus, R. Intriguing properties of neural networks. In Proceedings of the International Conference on Learning Representations, 2014.Google ScholarGoogle Scholar
  31. Taigman, Y., Yang, M., Ranzato, M.A., and Wolf, L. DeepFace: Closing the gap to human-level performance in face verification. In Proceedings of the Computer Vision and Pattern Recognition Conference. IEEE Press, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Tramèr, F., Kurakin, A., Papernot, N., Boneh, D., and McDaniel, P. Ensemble adversarial training: Attacks and defenses. arXiv preprint, 2017; https://arxiv.org/abs/1705.07204Google ScholarGoogle Scholar
  33. Tramèr, F., Zhang, F., Juels, A., Reiter, M.K., and Ristenpart, T. Stealing machine learning models via prediction APIs. In Proceedings of the USENIX Security Conference (San Francisco, CA, Jan. 25--27). USENIX Association, Berkeley, CA, 2016.Google ScholarGoogle Scholar
  34. Wolpert, D.H. The lack of a priori distinctions between learning algorithms. Neural Computation 8, 7 (1996), 1341--1390. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Xu, W., Qi, Y., and Evans, D. Automatically evading classifiers. In Proceedings of the 2016 Network and Distributed Systems Symposium (San Diego, CA, Feb. 21--24). Internet Society, Reston, VA, 2016.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Making machine learning robust against adversarial inputs

            Recommendations

            Comments

            Login options

            Check if you have access through your login credentials or your institution to get full access on this article.

            Sign in

            Full Access

            • Published in

              cover image Communications of the ACM
              Communications of the ACM  Volume 61, Issue 7
              July 2018
              90 pages
              ISSN:0001-0782
              EISSN:1557-7317
              DOI:10.1145/3234519
              Issue’s Table of Contents

              Copyright © 2018 Owner/Author

              Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

              Publisher

              Association for Computing Machinery

              New York, NY, United States

              Publication History

              • Published: 25 June 2018

              Check for updates

              Qualifiers

              • research-article
              • Popular
              • Refereed

            PDF Format

            View or Download as a PDF file.

            PDF

            eReader

            View online with eReader.

            eReader

            HTML Format

            View this article in HTML Format .

            View HTML Format