skip to main content
10.1145/3126908.3126948acmconferencesArticle/Chapter ViewAbstractPublication PagesscConference Proceedingsconference-collections

Extreme scale multi-physics simulations of the tsunamigenic 2004 sumatra megathrust earthquake

Published:12 November 2017Publication History

ABSTRACT

We present a high-resolution simulation of the 2004 Sumatra-Andaman earthquake, including non-linear frictional failure on a megathrustsplay fault system. Our method exploits unstructured meshes capturing the complicated geometries in subduction zones that are crucial to understand large earthquakes and tsunami generation. These up-to-date largest and longest dynamic rupture simulations enable analysis of dynamic source effects on the seafloor displacements.

To tackle the extreme size of this scenario an end-to-end optimization of the simulation code SeisSol was necessary. We implemented a new cache-aware wave propagation scheme and optimized the dynamic rupture kernels using code generation. We established a novel clustered local-time-stepping scheme for dynamic rupture. In total, we achieved a speed-up of 13.6 compared to the previous implementation. For the Sumatra scenario with 221 million elements this reduced the time-to-solution to 13.9 hours on 86, 016 Haswell cores. Furthermore, we used asynchronous output to overlap I/O and compute time.

References

  1. C. J. Ammon, C. Ji, H.-K. Thio, D. Robinson, S. Ni, V. Hjorleifsdottir, H. Kanamori, T. Lay, S. Das, D. Helmberger, G. Ichinose, J. Polet, and D. J. Wald. 2005. Rupture Process of the 2004 Sumatra-Andaman Earthquake. Science 308, 5725 (2005), 1133--1139.Google ScholarGoogle Scholar
  2. J.-P. Ampuero and Y. Ben-Zion. 2008. Cracks, pulses and macroscopic asymmetry of dynamic rupture on a bimaterial interface with velocity-weakening friction. Geophys. J. Int. 173, 2 (2008), 674--692.Google ScholarGoogle ScholarCross RefCross Ref
  3. D. J. Andrews. 1999. Test of two methods for faulting on finite-difference calculations. B. Seismol. Soc. Am. 89, 4 (1999), 931--937.Google ScholarGoogle Scholar
  4. D. J. Andrews. 2005. Rupture dynamics with energy loss outside the slip zone. J. Geophy. Res. 110, 1 (2005), 1--14.Google ScholarGoogle ScholarCross RefCross Ref
  5. D. J. Andrews, T. C. Hanks, and J. W. Whitney. 2007. Physical limits on ground motion at Yucca Mountain. B. Seismol. Soc. Am. 97, 6 (2007), 1771--1792.Google ScholarGoogle ScholarCross RefCross Ref
  6. H. Aochi and R. Madariaga. 2003. The 1999 Izmit, Turkey, Earthquake: Nonplanar Fault Structure, Dynamic Rupture Process, and Strong Ground Motion. B. Seismol. Soc. Am. 93, 3 (2003), 1249--1266.Google ScholarGoogle ScholarCross RefCross Ref
  7. H. Aochi, R. Madariaga, and E. Fukuyama. 2003. Constraint of fault parameters inferred from nonplanar fault modeling. Geochem. Geophys. 4, 2 (2003). 1020.Google ScholarGoogle Scholar
  8. P. Audet, M. G. Bostock, N. I. Christensen, and S. M. Peacock. 2009. Seismic evidence for overpressured subducted oceanic crust and megathrust fault sealing. Nature 457, 7225 (2009), 76--78.Google ScholarGoogle Scholar
  9. M. Barall. 2009. A grid-doubling finite-element technique for calculating dynamic three-dimensional spontaneous rupture on an earthquake fault. Geophys. J. Int. 178 (2009), 845--859.Google ScholarGoogle ScholarCross RefCross Ref
  10. M. Barall and R. A. Harris. 2014. Metrics for Comparing Dynamic Earthquake Rupture Simulations. Seismol. Res. Lett. 86, 1 (Nov. 2014), 223--235.Google ScholarGoogle Scholar
  11. G. I. Barenblatt. 1962. The Mathematical Theory of Equilibrium Cracks in Brittle Fracture. Advances in Applied Mechanics 7 (1962), 55--129.Google ScholarGoogle ScholarCross RefCross Ref
  12. Q. Bletery, A. Sladen, J. Jiang, and M. Simons. 2016. A Bayesian source model for the 2004 great Sumatra-Andaman earthquake. J. Geophy. Res. Solid Earth 121, 7 (2016), 5116--5135.Google ScholarGoogle ScholarCross RefCross Ref
  13. A. Breuer, A. Heinecke, and M. Bader. 2016. Petascale Local Time Stepping for the ADER-DG Finite Element Method. In 2016 IEEE Int. Parallel and Distrib. Process. Symp. (IPDPS). 854--863.Google ScholarGoogle Scholar
  14. A. Breuer, A. Heinecke, S. Rettenberger, M. Bader, A.-A. Gabriel, and C. Pelties. 2014. Sustained Petascale Performance of Seismic Simulations with SeisSol on SuperMUC. In Supercomputing: 29th Int. Conf. Springer, 1--18. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. C. Burstedde, O. Ghattas, M. Gurnis, T. Isaac, G. Stadler, T. Warburton, and L. Wilcox. 2010. Extreme-Scale AMR. In Proc. Int. Conf. for High Performance Computing, Networking, Storage and Anal. (SC '10). IEEE Computer Society, 1--12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. A. P. S. Chauhan, S. C. Singh, N. D. Hananto, H. Carton, F. Klingelhoefer, J.-X. Dessa, H. Permana, N. J. White, and D. Graindorge. 2009. Seismic imaging of forearc backthrusts at northern Sumatra subduction zone. Geophys. J. Int. 179, 3 (Dec. 2009), 1772--1780.Google ScholarGoogle ScholarCross RefCross Ref
  17. Computational Infrastructure for Geodynamics. 2017. SPECFEM3D Cartesian. www.geodynamics.org/cig/software/specfem3d/. (2017).Google ScholarGoogle Scholar
  18. Y. Cui, E. Poyraz, K. B. Olsen, J. Zhou, K. Withers, S. Callaghan, J. Larkin, C. Guest, D. Choi, A. Chourasia, and others. 2013. Physics-based seismic hazard analysis on petascale heterogeneous supercomputers. In Proc. Int. Conf. for High Performance Computing, Networking, Storage and Anal. ACM, 70. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. L. A. Dalguer and S. M. Day. 2007. Staggered-grid split-node method for spontaneous rupture simulation. J. Geophy. Res. 112, 2 (2007), 1--15.Google ScholarGoogle ScholarCross RefCross Ref
  20. L. A. Dalguer, K. Irikura, J. D. Riera, and H. C. Chiu. 2001. The importance of the dynamic source effects on strong ground motion during the 1999 Chi-Chi, Taiwan, earthquake: Brief interpretation of the damage distribution on buildings. B. Seismol. Soc. Am. 91, 5 (2001), 1112--1127.Google ScholarGoogle ScholarCross RefCross Ref
  21. S. M. Day, L. A. Dalguer, N. Lapusta, and Y. Liu. 2005. Comparison of finite difference and boundary integral solutions to three-dimensional spontaneous rupture. J. Geophy. Res. 110 (2005), 1--23.Google ScholarGoogle ScholarCross RefCross Ref
  22. J. de la Puente, J.-P. Ampuero, and M. Käser. 2009. Dynamic rupture modeling on unstructured meshes using a discontinuous Galerkin method. J. Geophy. Res. Solid Earth 114, B10 (2009). B10302.Google ScholarGoogle ScholarCross RefCross Ref
  23. N. DeDontney, J. R. Rice, and R. Dmowska. 2012. Finite Element Modeling of Branched Ruptures Including Off-Fault Plasticity. B. Seismol. Soc. Am. 102, 2 (2012), 541--562.Google ScholarGoogle ScholarCross RefCross Ref
  24. B. Duan. 2012. Dynamic rupture of the 2011 Mw9.0 Tohoku-Oki earthquake: Roles of a possible subducting seamount. J. Geophy. Res. Solid Earth 117, B5 (2012). B05311.Google ScholarGoogle ScholarCross RefCross Ref
  25. B. Duan and S. M. Day. 2008. Inelastic strain distribution and seismic radiation from rupture of a fault kink. J. Geophy. Res. 113, B12 (Dec. 2008), B12311.Google ScholarGoogle ScholarCross RefCross Ref
  26. M. Dumbser and M. Käser. 2006. An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes - II. The three-dimensional isotropic case. Geophys. J. Int. 167 (2006), 319--336.Google ScholarGoogle ScholarCross RefCross Ref
  27. M. Dumbser, M. Käser, and E. F. Toro. 2007. An arbitrary high-order Discontinuous Galerkin method for elastic waves on unstructured meshes V: Local time steppingan p-adaptivity. Geophys. J. Int. 171, 2 (2007), 695--717.Google ScholarGoogle ScholarCross RefCross Ref
  28. M. Dumbser and C.-D. Munz. 2005. Arbitrary high order discontinuous Galerkin schemes. Numerical methods for hyperbolic and kinetic problems (2005), 295--333.Google ScholarGoogle Scholar
  29. E. M. Dunham. 2007. Conditions governing the occurrence of supershear ruptures under slip-weakening friction. Geophys. J. Int. 112, B7 (2007), 1--24.Google ScholarGoogle Scholar
  30. G. P. Ely, S. M. Day, and J.-B. Minster. 2010. Dynamic rupture models for the southern San Andreas fault. B. Seismol. Soc. Am. 100, 1 (2010), 131--150.Google ScholarGoogle ScholarCross RefCross Ref
  31. W. Frings, F. Wolf, and V. Petkov. 2009. Scalable Massively Parallel I/O to Task-local Files. In Proc. Int. Conf. for High Performance Computing, Networking, Storage and Anal. (SC '09). ACM, New York, NY, USA, 1--11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. A.-A. Gabriel, J.-P. Ampuero, L. A. Dalguer, and P. M. Mai. 2012. The Transition of Dynamic Rupture Modes in Elastic Media Under Velocity-Weakening Friction. J. Geophy. Res. 117, B9 (2012), 0148--0227.Google ScholarGoogle ScholarCross RefCross Ref
  33. A.-A. Gabriel, J.-P. Ampuero, L. A. Dalguer, and P. M. Mai. 2013. Source Properties of Dynamic Rupture Pulses with Off-Fault Plasticity. J. Geophy. Res. (2013).Google ScholarGoogle Scholar
  34. P. Galvez, J.-P. Ampuero, L. A. Dalguer, S. N. Somala, and T. Nissen-Meyer. 2014. Dynamic earthquake rupture modelled with an unstructured 3-D spectral element method applied to the 2011 M9 Tohoku earthquake. Geophys. J. Int. 198, 2 (2014), 1222--1240.Google ScholarGoogle ScholarCross RefCross Ref
  35. P. Galvez, L. A. Dalguer, J.-P. Ampuero, and D. Giardini. 2016. Rupture Reactivation during the 2011 Mw 9.0 Tohoku Earthquake: Dynamic Rupture and Ground-Motion Simulations. B. Seismol. Soc. Am. 106, 3 (2016), 819--831.Google ScholarGoogle ScholarCross RefCross Ref
  36. C. Geuzaine and J. F. Remacle. 2009. Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities. Internat. J. Numer. Methods Engrg. 79, 11 (2009), 1309--1331.Google ScholarGoogle ScholarCross RefCross Ref
  37. J. L. Hardebeck. 2015. Stress orientations in subduction zones and the strength of subduction megathrust faults. Science 349, 6253 (Sept. 2015), 1213--1216.Google ScholarGoogle ScholarCross RefCross Ref
  38. R. A. Harris, M. Barall, D. J. Andrews, B. Duan, S. Ma, E. M. Dunham, A.-A. Gabriel, Y. Kaneko, Y. Kase, B. T. Aagaard, D. D. Oglesby, J.-P. Ampuero, T. C. Hanks, and N. Abrahamson. 2011. Verifying a Computational Method for Predicting Extreme Ground Motion. Seismol. Res. Lett. 82, 5 (2011), 638--644.Google ScholarGoogle ScholarCross RefCross Ref
  39. R. A. Harris, M. Barall, R. J. Archuleta, E. M. Dunham, B. T. Aagaard, J.-P. Ampuero, H. Bhat, V. Cruz-Atienza, L. A. Dalguer, P. Dawson, S. M. Day, B. Duan, G. P. Ely, Y. Kaneko, Y. Kase, N. Lapusta, Y. Liu, S. Ma, D. D. Oglesby, K. B. Olsen, A. Pitarka, S. Song, and E. Templeton. 2009. The SCEC/USGS Dynamic Earthquake Rupture Code Verification Exercise. Seismol. Res. Lett. 80, 1 (2009), 119--126.Google ScholarGoogle ScholarCross RefCross Ref
  40. R. A. Harris and S. M. Day. 1999. Dynamic 3D simulations of earthquakes on en echelon faults. Geophys. Res. Lett. 26, 14 (1999), 2089--2092.Google ScholarGoogle ScholarCross RefCross Ref
  41. G. P. Hayes, D. J. Wald, and R. L. Johnson. 2012. Slab 1.0: A three-dimensional model of global subduction zone geometries. J. Geophy. Res. 117, B1 (Jan. 2012), B01302.Google ScholarGoogle ScholarCross RefCross Ref
  42. A. Heinecke, A. Breuer, M. Bader, and P. Dubey. 2016. High Order Seismic Simulations on the Intel Xeon Phi Processor (Knights Landing). In High Performance Computing: 31st International Conference, ISC High Performance 2016, Frankfurt, Germany, June 19-23, 2016, Proceedings. Springer, 343--362.Google ScholarGoogle Scholar
  43. A. Heinecke, A. Breuer, S. Rettenberger, M. Bader, A.-A. Gabriel, C. Pelties, A. Bode, W. Barth, X.-K. Liao, K. Vaidyanathan, M. Smelyanskiy, and P. Dubey. 2014. Petascale High Order Dynamic Rupture Earthquake Simulations on Heterogeneous Supercomputers. In Proc. Int. Conf. for High Performance Computing, Networking, Storage and Anal. IEEE, New Orleans, 3--14. Gordon Bell Finalist. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. A. Heinecke, G. Henry, M. Hutchinson, and H. Pabst. 2016. LIBXSMM: Accelerating Small Matrix Multiplications by Runtime Code Generation. In Proc. Int. Conf. for High Performance Computing, Networking, Storage and Anal. (SC '16). IEEE Press, Piscataway, NJ, USA, 84:1--84:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. K. Hiroo and K. Masayuki. 1993. The 1992 Nicaragua earthquake: a slow tsunami earthquake associated with subducted sediments. Nature 361, 6414 (Feb. 1993), 714--716.Google ScholarGoogle Scholar
  46. Y. Huang, J.-P. Ampuero, and H. Kanamori. 2014. Slip-Weakening Models of the 2011 Tohoku-Oki Earthquake and Constraints on Stress Drop and Fracture Energy. Pure Appl. Geophys. 171, 10 (2014), 2555--2568.Google ScholarGoogle ScholarCross RefCross Ref
  47. M. Hutchinson, A. Heinecke, H. Pabst, G. Henry, M. Parsani, and D. Keyes. 2016. Efficiency of High Order Spectral Element Methods on Petascale Architectures. In High Performance Computing: 31st Int. Conf. Springer, 449--466.Google ScholarGoogle Scholar
  48. T. Ichimura, K. Fujita, P. E. B. Quinay, L. Maddegedara, M. Hori, S. Tanaka, Y. Shizawa, H. Kobayashi, and K. Minami. 2015. Implicit Nonlinear Wave Simulation with 1.08T DOF and 0.270T Unstructured Finite Elements to Enhance Comprehensive Earthquake Simulation. In Proc. Int. Conf. for High Performance Computing, Networking, Storage and Anal. (SC '15). ACM, New York, 4:1--4:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. T. Ichimura, K. Fujita, S. Tanaka, M. Hori, M. Lalith, Y. Shizawa, and H. Kobayashi. 2014. Physics-based urban earthquake simulation enhanced by 10.7 BlnDOFX 30 K time-step unstructured FE non-linear seismic wave simulation. In Proc. Int. Conf. for High Performance Computing, Networking, Storage and Anal. IEEE, 15--26. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. M. Käser and M. Dumbser. 2006. An Arbitrary High Order Discontinuous Galerkin Method for Elastic Waves on Unstructured Meshes I: The Two-Dimensional Isotropic Case with External Source Terms. Geophys. J. Int. 166, 2 (2006), 855--877.Google ScholarGoogle ScholarCross RefCross Ref
  51. M. Käser, M. Dumbser, J. de la Puente, and H. Igel. 2007. Anarbitraryhigh-order Discontinuous Galerkin method for elastic waves on unstructured meshes - III. Viscoelastic attenuation. Geophys. J. Int. 168 (2007), 224--242.Google ScholarGoogle ScholarCross RefCross Ref
  52. M. Käser and F. Gallovič. 2008. Effects of complicated 3-D rupture geometries on earthquake ground motion and their implications: a numerical study. Geophys. J. Int. 172, 1 (2008), 276--292.Google ScholarGoogle ScholarCross RefCross Ref
  53. J. E. Kozdon and E. M. Dunham. 2013. Rupture to the trench: Dynamic rupture simulations of the 11 March 2011 Tohoku earthquake. B. Seismol. Soc. Am. 103, 2B (2013), 1275--1289.Google ScholarGoogle ScholarCross RefCross Ref
  54. F. Krüger and M. Ohrnberger. 2005. Spatio-temporal source characteristics of the 26 December 2004 Sumatra earthquake as imaged by teleseismic broadband arrays. Geophys. Res. Lett. 32, 24 (2005), 1--4.Google ScholarGoogle ScholarCross RefCross Ref
  55. G. Laske, G. Masters, Z. Ma, and M. Pasyanos. 2013. Update on CRUST1.0 - A 1-degree Global Model of Earth's Crust, Abstract EGU2013-2658. European Geophysical Union.Google ScholarGoogle Scholar
  56. R. J. LeVeque. 2002. Finite volume methods for hyperbolic problems. Vol. 31. Cambridge University Press.Google ScholarGoogle Scholar
  57. J. Li, W. keng Liao, A. Choudhary, R. Ross, R. Thakur, W. Gropp, R. Latham, A. Siegel, B. Gallagher, and M. Zingale. 2003. Parallel netCDF: A High-Performance Scientific I/O Interface. In Supercomputing, 2003 ACM/IEEE Conference. 39--39. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. J.-Y. Lin, X. Le Pichon, C. Rangin, J. C. Sibuet, and T. Maury. 2009. Spatial after-shock distribution of the 26 December 2004 great Sumatra-Andaman earthquake in the northern Sumatra area. Geochem. Geophys. 10, 5 (2009).Google ScholarGoogle Scholar
  59. Q. Liu, J. Logan, Y. Tian, H. Abbasi, N. Podhorszki, J. Y. Choi, S. Klasky, R. Tchoua, J. Lofstead, R. Oldfield, M. Parashar, N. Samatova, K. Schwan, A. Shoshani, M. Wolf, K. Wu, and W. Yu. 2014. Hello ADIOS: the challenges and lessons of developing leadership class I/O frameworks. Concurrency and Computation: Practice and Experience 26, 7 (2014), 1453--1473. Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. J. Lofstead, R. Oldfield, T. Kordenbrock, and C. Reiss. 2011. Extending Scalability of Collective IO Through Nessie and Staging. In Proceedings of the Sixth Workshop on Parallel Data Storage (PDSW '11). ACM, New York, NY, USA, 7--12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. J. C. Lozos. 2016. A case for historic joint rupture of the San Andreas and San Jacinto faults. Science advances 2, 3 (2016), e1500621.Google ScholarGoogle Scholar
  62. S. Ma. 2012. A self-consistent mechanism for slow dynamic deformation and large tsunami generation for earthquakes in the shallow subduction zone. Geophys. Res. Lett. 39 (2012), 1--7.Google ScholarGoogle ScholarCross RefCross Ref
  63. S. Ma and G. C. Beroza. 2008. Rupture dynamics on a bimaterial interface for dipping faults. B. Seismol. Soc. Am. 98, 4 (2008), 1642--1658.Google ScholarGoogle ScholarCross RefCross Ref
  64. S. Ma and E. T. Hirakawa. 2013. Dynamic wedge failure reveals anomalous energy radiation of shallow subduction earthquakes. Earth Planet. Sci. Lett. 375 (2013), 113--122.Google ScholarGoogle ScholarCross RefCross Ref
  65. R. Madariaga. 1983. High frequency radiation from dynamic earthquake fault models. Annales Geophysicae 1, 1 (1983), 17--23.Google ScholarGoogle Scholar
  66. A. J. Meltzner, K. Sieh, M. Abrams, D. C. Agnew, K. W. Hudnut, J.-P. Avouac, and D. H. Natawidjaja. 2006. Uplift and subsidence associated with the great Aceh-Andaman earthquake of 2004. J. Geophy. Res. Solid Earth 111, B2 (2006).Google ScholarGoogle ScholarCross RefCross Ref
  67. G. F. Moore, N. L. Bangs, A. Taira, S. Kuramoto, E. Pangborn, and H. J. Tobin. 2007. Three-Dimensional Splay Fault Geometry and Implications for Tsunami Generation. Science 318, 5853 (2007), 1128--1131.Google ScholarGoogle Scholar
  68. D. D. Oglesby. 2008. Rupture termination and jump on parallel offset faults. B. Seismol. Soc. Am. 98, 1 (2008), 440--447.Google ScholarGoogle ScholarCross RefCross Ref
  69. D. D. Oglesby, R. J. Archuleta, and S. B. Nielsen. 2000. The three-dimensional dynamics of dipping faults. B. Seismol. Soc. Am. 90, 3 (2000), 616--628.Google ScholarGoogle ScholarCross RefCross Ref
  70. C. Pelties, J. de la Puente, J.-P. Ampuero, G. B. Brietzke, and M. Käser. 2012. Three-dimensional dynamic rupture simulation with a high-order discontinuous Galerkin method on unstructured tetrahedral meshes. J. Geophy. Res. Solid Earth 117, B2 (2012). B02309.Google ScholarGoogle ScholarCross RefCross Ref
  71. S. Rettenberger and M. Bader. 2015. Optimizing Large Scale I/O for Petascale Seismic Simulations on Unstructured Meshes. In 2015 IEEE International Conference on Cluster Computing (CLUSTER). IEEE Xplore, Chicago, IL, 314--317. Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. M. Rietmann, M. Grote, D. Peter, and O. Schenk. 2017. Newmark local time stepping on high-performance computing architectures. J. Comput. Phys. 334 (2017), 308--326.Google ScholarGoogle ScholarCross RefCross Ref
  73. M.E. Rognes, R. C. Kirby, and A. Logg. 2010. Efficient Assembly of H (div) and H (curl) Conforming Finite Elements. SIAM Journal on Scientific Computing 31, 6 (2010), 4130--4151.Google ScholarGoogle ScholarCross RefCross Ref
  74. O. Rojas, S. Day, J. Castillo, and L. A. Dalguer. 2008. Modelling of rupture propagation using high-order mimetic finite differences. Geophys. J. Int. 172, 2 (2008), 631--650.Google ScholarGoogle ScholarCross RefCross Ref
  75. D. Roten, Y. Cui, K. B. Olsen, S. M. Day, K. Withers, W. H. Savran, P. Wang, and D. Mu. 2016. High-frequency nonlinear earthquake simulations on petascale heterogeneous supercomputers. In Proc. Int. Conf. for High Performance Computing, Networking, Storage and Anal. IEEE, 82. Google ScholarGoogle ScholarDigital LibraryDigital Library
  76. D. Roten, K. B. Olsen, H. Magistrale, J. C. Pechmann, and V. M. Cruz-Atienza. 2011. 3D simulations of M7 earthquakes on the Wasatch fault, Utah, part I: Long-period (0-1 Hz) ground motion. B. Seismol. Soc. Am. 101, 5 (2011), 2045--2063.Google ScholarGoogle ScholarCross RefCross Ref
  77. D. M. Saffer and H. J. Tobin. 2011. Hydrogeology and Mechanics of Subduction Zone Forearcs: Fluid Flow and Pore Pressure. Annu. Rev. Earth Planet. Sci. 39 (2011), 157--86.Google ScholarGoogle ScholarCross RefCross Ref
  78. K. Schloegel, G. Karypis, and V. Kumar. 2002. Parallel static and dynamic multi-constraint graph partitioning. Concurrency and Computation: Practice and Experience 14, 3 (2002), 219--240.Google ScholarGoogle ScholarCross RefCross Ref
  79. P. Shearer and R. Bürgmann. 2010. Lessons Learned from the 2004 Sumatra-Andaman Megathrust Rupture. Annu. Rev. Earth Planet. Sci. 38 (2010), 103--131.Google ScholarGoogle ScholarCross RefCross Ref
  80. J.-C. Sibuet, C. Rangin, X. Le Pichon, S. Singh, A. Cattaneo, D. Graindorge, F. Klingelhoefer, J.-Y. Lin, J. Malod, T. Maury, and others. 2007. 26th December 2004 great Sumatra-Andaman earthquake: Co-seismic and post-seismic motions in northern Sumatra. Earth Planet. Sci. Lett. 263, 1-2 (Nov. 2007), 88--103.Google ScholarGoogle ScholarCross RefCross Ref
  81. S. C. Singh, H. Carton, P. Tapponnier, N. D. Hananto, A. P. S. Chauhan, D. Hartoyo, M. Bayly, S. Moeljopranoto, T. Bunting, P. Christie, H. Lubis, and J. Martin. 2008. Seismic evidence for broken oceanic crust in the 2004 Sumatra earthquake epicentral region. Nature Geoscience 1, 11 (Oct. 2008), 777--781.Google ScholarGoogle ScholarCross RefCross Ref
  82. A. H. Stroud. 1971. Approximate calculation of multiple integrals. Prentice-Hall, Englewood Cliffs, N.J.Google ScholarGoogle Scholar
  83. The HDF Group. 2017. HDF5. https://www.hdfgroup.org/HDF5/. (2017).Google ScholarGoogle Scholar
  84. E. F. Toro. 1999. Riemann Solvers and Numerical Methods for Fluid Dynamics, A Practical Introduction. Springer, Berlin, Heidelberg, New York.Google ScholarGoogle Scholar
  85. K. Tsuda, S. Iwase, H. Uratani, S. Ogawa, T. Watanabe, J. Miyakoshi, and J.-P. Ampuero. 2017. Dynamic Rupture Simulations Based on the Characterized Source Model of the 2011 Tohoku Earthquake. Pure Appl. Geophys. (2017), 1--12.Google ScholarGoogle Scholar
  86. C. Uphoff and M. Bader. 2016. Generating high performance matrix kernels for earthquake simulations with viscoelastic attenuation. In 2016 Int. Conf. High Performance Computing Simulation (HPCS). 908--916.Google ScholarGoogle Scholar
  87. V. Vishwanath, M. Hereld, and M. E. Papka. 2011. Toward simulation-time data analysis and I/O acceleration on leadership-class systems. In 2011 IEEE Symposium on Large Data Analysis and Visualization. 9--14.Google ScholarGoogle Scholar
  88. P. Weatherall, K. M. Marks, M. Jakobsson, T. Schmitt, S. Tani, J. E. Arndt, M. Rovere, D. Chayes, V. Ferrini, and R. Wigley. 2015. A new digital bathymetric model of the world's oceans. Earth and Space Science 2, 8 (2015), 331--345.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Extreme scale multi-physics simulations of the tsunamigenic 2004 sumatra megathrust earthquake

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      SC '17: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis
      November 2017
      801 pages
      ISBN:9781450351140
      DOI:10.1145/3126908
      • General Chair:
      • Bernd Mohr,
      • Program Chair:
      • Padma Raghavan

      Copyright © 2017 Owner/Author

      Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 12 November 2017

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      SC '17 Paper Acceptance Rate61of327submissions,19%Overall Acceptance Rate1,516of6,373submissions,24%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader