skip to main content
10.1145/3123021.3123039acmconferencesArticle/Chapter ViewAbstractPublication PagesubicompConference Proceedingsconference-collections
research-article

The dermal abyss: interfacing with the skin by tattooing biosensors

Published:11 September 2017Publication History

ABSTRACT

The Dermal Abyss (d-abyss) presents an approach to biointerfaces in which the body surface is rendered as an interactive display by patterning biosensors into the skin to produce color changes in response to biomarker variations in the interstitial fluid. It combines advances in biotechnology with traditional methods in tattoo artistry. d-abyss is designed to use the aesthetics, permanence, and visible nature of tattoos to encode information. In the present work, we replace traditional inks with colorimetric and fluorescent biosensors that can report on the concentration of sodium, glucose, and pH in the interstitial fluid of the skin. We report the preliminary evaluation of these biosensors in an ex vivo skin model, assessing their visibility from the dermis. We describe different applications of d-abyss in the medical, lifestyle, and security domains. This work is a proof of concept of a platform in which the skin reveals information inside the body, tattoos form wearable displays within the skin, and the body's metabolism works as an input for the d-abyss biosensors.

References

  1. Amy Wong, 1999. Accessed: 2016-08-09.Google ScholarGoogle Scholar
  2. Bandodkar, A. J., Hung, V. W., Jia, W., Valdés-Ramírez, G., Windmiller, J. R., Martinez, A. G., Ramírez, J., Chan, G., Kerman, K., and Wang, J. Tattoo-based potentiometric ion-selective sensors for epidermal ph monitoring. Analyst 138, 1 (2013), 123--128.Google ScholarGoogle ScholarCross RefCross Ref
  3. Bandodkar, A. J., Jia, W., Yardimci, C., Wang, X., Ramirez, J., and Wang, J. Tattoo-based noninvasive glucose monitoring: a proof-of-concept study. Analytical chemistry 87, 1 (2014), 394--398.Google ScholarGoogle Scholar
  4. Biohack.me, 2016. Accessed: 2016-08-09.Google ScholarGoogle Scholar
  5. Bitarello, B., Fuks, H., and Queiroz, J. a. New technologies for dynamic tattoo art. In Proceedings of the 5th International Conference on Tangible, Embedded and Embodied Interaction, ACM (2011), 313--316. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Bradbury, R. The Illustrated Man. Simon and Schuster, 2012.Google ScholarGoogle Scholar
  7. Clynes, M. E. Cyborgs and space. Astronautics 26 (1960), 74--75.Google ScholarGoogle Scholar
  8. Deter-Wolf, A., Robitaille, B., Krutak, L., and Galliot, S. The world's oldest tattoos. Journal of Archaeological Science: Reports 5 (2016), 19--24.Google ScholarGoogle ScholarCross RefCross Ref
  9. Diastix. Urine test strips, 2015. Accessed: 2017-01-02.Google ScholarGoogle Scholar
  10. Fairs, M. Design probes 2007 by philips design at dutch deign week, 2007. Accessed: 2016-08-09.Google ScholarGoogle Scholar
  11. Gao, W., Emaminejad, S., Nyein, H. Y. Y., Challa, S., Chen, K., Peck, A., Fahad, H. M., Ota, H., Shiraki, H., Kiriya, D., et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529, 7587 (2016), 509--514.Google ScholarGoogle ScholarCross RefCross Ref
  12. Graudal, N. Population data on blood pressure and dietary sodium and potassium do not support public health strategy to reduce salt intake in canadians. Canadian Journal of Cardiology 32, 3 (2016), 283--285.Google ScholarGoogle ScholarCross RefCross Ref
  13. Groenendaal, W., von Basum, G., Schmidt, K. A., Hilbers, P. A., and van Riel, N. A. Quantifying the composition of human skin for glucose sensor development. Journal of diabetes science and technology 4, 5 (2010), 1032--1040.Google ScholarGoogle Scholar
  14. Heffernan, K. J., Vetere, F., and Chang, S. You put what, where?: Hobbyist use of insertable devices. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, ACM (2016), 1798--1809. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Jia, W., Bandodkar, A. J., Valdes-Ramírez, G., Windmiller, J. R., Yang, Z., Ramírez, J., Chan, G., and Wang, J. Electrochemical tattoo biosensors for real-time noninvasive lactate monitoring in human perspiration. Analytical chemistry 85, 14 (2013), 6553--6560.Google ScholarGoogle Scholar
  16. Kao, H.-L. C., Johns, P., Roseway, A., and Czerwinski, M. Tattio: Fabrication of aesthetic and functional temporary tattoos. In Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems, ACM (2016), 3699--3702. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Kim, D.-H., Kim, Y.-S., Amsden, J., Panilaitis, B., Kaplan, D. L., Omenetto, F. G., Zakin, M. R., and Rogers, J. A. Silicon electronics on silk as a path to bioresorbable, implantable devices. Applied physics letters 95, 13 (2009), 133701.Google ScholarGoogle Scholar
  18. Kluger, N., and Aldasouqi, S. A new purpose for tattoos: medical alert tattoos. La Presse Médicale 42, 2 (2013), 134--137.Google ScholarGoogle ScholarCross RefCross Ref
  19. Kumar, M., Ghosh, S., Nayak, S., and Das, A. Recent advances in biosensor based diagnosis of urinary tract infection. Biosensors and Bioelectronics 80 (2016), 497--510.Google ScholarGoogle ScholarCross RefCross Ref
  20. Liu, X., Vega, K., Maes, P., and Paradiso, J. A. Wearability factors for skin interfaces. In Proceedings of the 7th Augmented Human International Conference 2016, ACM (2016), 21. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Lo, B. P., Thiemjarus, S., King, R., and Yang, G.-Z. Body sensor network-a wireless sensor platform for pervasive healthcare monitoring. na, 2005.Google ScholarGoogle Scholar
  22. More, M., and Vita-More, N. The transhumanist reader: Classical and contemporary essays on the science, technology, and philosophy of the human future. John Wiley & Sons, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  23. Mostafalu, P., Akbari, M., Alberti, K. A., Xu, Q., Khademhosseini, A., and Sonkusale, S. R. A toolkit of thread-based microfluidics, sensors, and electronics for 3d tissue embedding for medical diagnostics. Microsystems & Nanoengineering 2 (2016).Google ScholarGoogle Scholar
  24. Oskar and Gaspar. Ink mapping: Video mapping projection on tattoos, by oskar and gaspar, 2015. Accessed: 2016-08-09.Google ScholarGoogle Scholar
  25. Phan, C.-M., Subbaraman, L., and Jones, L. W. The use of contact lenses as biosensors. Optometry & Vision Science 93, 4 (2016), 419--425.Google ScholarGoogle ScholarCross RefCross Ref
  26. Ring, C. M., and Cohen, P. J. Cryosurgery for tattoo removal. In Dermatological Cryosurgery and Cryotherapy. Springer, 2016, 609--610.Google ScholarGoogle Scholar
  27. Scallan, J., Huxley, V. H., and Korthuis, R. J. The interstitium.Google ScholarGoogle Scholar
  28. Shibata, H., Heo, Y. J., Okitsu, T., Matsunaga, Y., Kawanishi, T., and Takeuchi, S. Injectable hydrogel microbeads for fluorescence-based in vivo continuous glucose monitoring. Proceedings of the National Academy of Sciences 107, 42 (2010), 17894--17898.Google ScholarGoogle ScholarCross RefCross Ref
  29. Tiggemann, M., and Golder, F. Tattooing: An expression of uniqueness in the appearance domain. Body Image 3, 4 (2006), 309--315.Google ScholarGoogle ScholarCross RefCross Ref
  30. Vega, K., and Fuks, H. Beauty technology: Body surface computing. Computer 47, 4 (2014), 71--75. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Wan, L., Han, G., Wang, H., Shu, L., Feng, N., and Peng, B. Wearable sensor localization considering mixed distributed sources in health monitoring systems. Sensors 16, 3 (2016), 368.Google ScholarGoogle ScholarCross RefCross Ref
  32. x-files wikia. Never again, 1997. Accessed: 2016-08-09.Google ScholarGoogle Scholar
  33. Yetisen, A. K., Butt, H., Volpatti, L. R., Pavlichenko, I., Humar, M., Kwok, S. J., Koo, H., Kim, K. S., Naydenova, I., Khademhosseini, A., et al. Photonic hydrogel sensors. Biotechnology advances 34, 3 (2016), 250--271.Google ScholarGoogle Scholar
  34. Yetisen, A. K., Naydenova, I., da Cruz Vasconcellos, F., Blyth, J., and Lowe, C. R. Holographic sensors: three-dimensional analyte-sensitive nanostructures and their applications. Chemical reviews 114, 20 (2014), 10654--10696.Google ScholarGoogle Scholar
  35. Yokota, T., Zalar, P., Kaltenbrunner, M., Jinno, H., Matsuhisa, N., Kitanosako, H., Tachibana, Y., Yukita, W., Koizumi, M., and Someya, T. Ultraflexible organic photonic skin. Science advances 2, 4 (2016), e1501856.Google ScholarGoogle Scholar

Index Terms

  1. The dermal abyss: interfacing with the skin by tattooing biosensors

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      ISWC '17: Proceedings of the 2017 ACM International Symposium on Wearable Computers
      September 2017
      276 pages
      ISBN:9781450351881
      DOI:10.1145/3123021

      Copyright © 2017 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 11 September 2017

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      Overall Acceptance Rate38of196submissions,19%

      Upcoming Conference

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader