skip to main content
10.1145/3123021.3123029acmconferencesArticle/Chapter ViewAbstractPublication PagesubicompConference Proceedingsconference-collections
research-article
Open Access

Personalising vibrotactile displays through perceptual sensitivity adjustment

Published:11 September 2017Publication History

ABSTRACT

Haptic displays are commonly limited to transmitting a discrete set of tactile motives. In this paper, we explore the transmission of real-valued information through vibrotactile displays. We simulate spatial continuity with three perceptual models commonly used to create phantom sensations: the linear, logarithmic and power model. We show that these generic models lead to limited decoding precision, and propose a method for model personalization adjusting to idiosyncratic and spatial variations in perceptual sensitivity. We evaluate this approach using two haptic display layouts: circular, worn around the wrist and the upper arm, and straight, worn along the forearm. Results of a user study measuring continuous value decoding precision show that users were able to decode continuous values with relatively high accuracy (4.4% mean error), circular layouts performed particularly well, and personalisation through sensitivity adjustment increased decoding precision.

References

  1. Alles, D. S. Information transmission by phantom sensations. IEEE Transactions on Man-Machine Systems 11, 1 (March 1970), 85--91.Google ScholarGoogle ScholarCross RefCross Ref
  2. Badke, M. B., Sherman, J., Boyne, P., Page, S., and Dunning, K. Tongue-based biofeedback for balance in stroke: results of an 8-week pilot study. Archives of physical medicine and rehabilitation.Google ScholarGoogle Scholar
  3. Barghout, A., Cha, J., Saddik, A. E., Kammerl, J., and Steinbach, E. Spatial resolution of vibrotactile perception on the human forearm when exploiting funneling illusion. In 2009 IEEE International Workshop on Haptic Audio visual Environments and Games (Nov 2009), 19--23.Google ScholarGoogle ScholarCross RefCross Ref
  4. Bliss, J. C., Katcher, M. H., Rogers, C. H., and Shepard, R. P. Optical-to-tactile image conversion for the blind. IEEE Transactions on Man-Machine Systems 11, 1 (March 1970), 58--65.Google ScholarGoogle ScholarCross RefCross Ref
  5. Brown, L. M., and Kaaresoja, T. Feel who's talking: Using tactons for mobile phone alerts. In CHI '06 Extended Abstracts on Human Factors in Computing Systems, CHI EA '06, ACM (2006), 604--609. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Byrd, R. H., Lu, P., Nocedal, J., and Zhu, C. A Limited Memory Algorithm for Bound Constrained Optimization. SIAM J. Sci. Comput. 16, 5 (Sept. 1995), 1190--1208. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Cha, J., Rahal, L., and Saddik, A. E. A pilot study on simulating continuous sensation with two vibrating motors. In 2008 IEEE International Workshop on Haptic Audio visual Environments and Games (Oct 2008), 143--147.Google ScholarGoogle ScholarCross RefCross Ref
  8. Chatterjee, A., Chaubey, P., Martin, J., and Thakor, N. V. Quantifying prosthesis control improvements using a vibrotactile representation of grip force. In 2008 IEEE Region 5 Conference (April 2008), 1--5.Google ScholarGoogle Scholar
  9. Cholewiak, R. W., and Collins, A. A. Vibrotactile localization on the arm: Effects of place, space, and age. Perception & Psychophysics (2003).Google ScholarGoogle Scholar
  10. Crossan, A., and Brewster, S. Two-handed navigation in a haptic virtual environment. In CHI '06 Extended Abstracts on Human Factors in Computing Systems, CHI EA '06, ACM (New York, NY, USA, 2006). Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. de Jesus Oliveira, and Maciel, A. Assessment of tactile languages as navigation aid in 3d environments. In EUROHAPTICS, 2014 (2014).Google ScholarGoogle ScholarCross RefCross Ref
  12. de Jesus Oliveira, and Maciel, A. Introducing the modifier tactile pattern for vibrotactile communication. In EUROHAPTICS, 2014 (2014).Google ScholarGoogle ScholarCross RefCross Ref
  13. Ding, Z. Q., Luo, Z. Q., Causo, A., Chen, I. M., Yue, K. X., and Yeo, S. H. Inertia sensor-based guidance system for upperlimb posture correction. Med Eng Phys 35 (2013).Google ScholarGoogle Scholar
  14. Eid, M., Korres, G., and Jensen, C. B. F. Soa thresholds for the perception of discrete/continuous tactile stimulation. In 2015 Seventh International Workshop on Quality of Multimedia Experience (QoMEX) (May 2015), 1--6.Google ScholarGoogle ScholarCross RefCross Ref
  15. Gault, R. H. Progress in experiments on tactual interpretation of oral speech. The Journal of Abnormal Psychology and Social Psychology 19, 2 (1924), 155.Google ScholarGoogle ScholarCross RefCross Ref
  16. Geldard, F. A. Adventures in tactile literacy. American Psychologist 12, 3 (1957), 115--124.Google ScholarGoogle ScholarCross RefCross Ref
  17. Gopalai, A. A., and Senanayake, S. M. N. A. A wearable real-time intelligent posture corrective system using vibrotactile feedback. IEEE Trans Mechatronics 16 (2011).Google ScholarGoogle Scholar
  18. Gunther, E. Skinscape: A tool for composition in the tactile modality. PhD thesis, Massachusetts Institute of Technology, 2001.Google ScholarGoogle Scholar
  19. Israr, A., Kim, S.-C., Stec, J., and Poupyrev, I. Surround haptics: Tactile feedback for immersive gaming experiences. In CHI '12 Extended Abstracts on Human Factors in Computing Systems, CHI EA '12 (2012). Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Israr, A., and Poupyrev, I. Control space of apparent haptic motion. In 2011 IEEE World Haptics Conference (June 2011), 457--462.Google ScholarGoogle ScholarCross RefCross Ref
  21. Israr, A., and Poupyrev, I. Tactile brush: Drawing on skin with a tactile grid display. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI '11 (2011). Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Kaul, O. B., and Rohs, M. Haptichead: A spherical vibrotactile grid around the head for 3d guidance in virtual and augmented reality. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, CHI '17 (2017). Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Kentala, E., Vivas, J., and Conrad Wall, I. Reduction of postural sway by use of a vibrotactile balance prosthesis prototype in subjects with vestibular deficits. Annals of Otology, Rhinology & Laryngology 112.Google ScholarGoogle Scholar
  24. Kirman, J. H. Tactile perception of computer-derived formant patterns from voiced speech. The Journal of the Acoustical Society of America (1974).Google ScholarGoogle Scholar
  25. Lee, J., Kim, Y., and Kim, G. J. Effects of visual feedback on out-of-body illusory tactile sensation when interacting with augmented virtual objects. IEEE Transactions on Human-Machine Systems 47, 1 (Feb 2017), 101--112.Google ScholarGoogle Scholar
  26. Liao, Y.-C., Chen, Y.-L., Lo, J.-Y., Liang, R.-H., Chan, L., and Chen, B.-Y. Edgevib: Effective alphanumeric character output using a wrist-worn tactile display. In Proceedings of the 29th Annual Symposium on User Interface Software and Technology, UIST '16 (2016). Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Luzhnica, G., Veas, E., and Pammer, V. Skin reading: Encoding text in a 6-channel haptic display. In Proceedings of the 2016 ACM International 73 Symposium on Wearable Computers, ISWC '16 (2016). Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Mackinlay, J. Automating the design of graphical presentations of relational information. ACM Transactions on Graphics 5, 2 (Apr. 1986). Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Makous, J. C., Friedman, R. M., and Vierck, C. J. A critical band filter in touch. The Journal of neuroscience : the official journal of the Society for Neuroscience 15 4 (1995), 2808--18.Google ScholarGoogle Scholar
  30. Nicolau, H., Guerreiro, J. a., Guerreiro, T., and Carriço, L. Ubibraille: Designing and evaluating a vibrotactile braille-reading device. In ACM SIGACCESS, ASSETS '13 (2013). Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Novich, S. D., and Eagleman, D. M. Using space and time to encode vibrotactile information: toward an estimate of the skin's achievable throughput. Experimental Brain Research, 10 (2015).Google ScholarGoogle Scholar
  32. Ooka, T., and Fujita, K. Virtual object manipulation system with substitutive display of tangential force and slip by control of vibrotactile phantom sensation. In 2010 IEEE Haptics Symposium (2010). Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Park, J., Kim, J., Oh, Y., and Tan, H. Z. Rendering moving tactile stroke on the palm using a sparse 2d array. In Haptics: Perception, Devices, Control, and Applications:International Conference, EuroHaptics 2016, Springer International Publishing (Cham, 2016). Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Pylatiuk, C., Kargov, A., and Schulz, S. Design and evaluation of a low-cost force feedback system for myoelectric prosthetic hands. JPO: Journal of Prosthetics and Orthotics 18, 2 (2006), 57--61.Google ScholarGoogle ScholarCross RefCross Ref
  35. Rahal, L., Cha, J., and Saddik, A. E. Continuous tactile perception for vibrotactile displays. In 2009 IEEE International Workshop on Robotic and Sensors Environments (Nov 2009), 86--91.Google ScholarGoogle ScholarCross RefCross Ref
  36. Rosenthal, J., Edwards, N., Villanueva, D., Krishna, S., McDaniel, T., and Panchanathan, S. Design, implementation, and case study of a pragmatic vibrotactile belt. IEEE Transactions on Instrumentation and Measurement 60, 1 (Jan 2011), 114--125.Google ScholarGoogle ScholarCross RefCross Ref
  37. Saunders, I., and Vijayakumar, S. The role of feed-forward and feedback processes for closed-loop prosthesis control. Journal of NeuroEngineering and Rehabilitation 8, 1 (2011), 60.Google ScholarGoogle ScholarCross RefCross Ref
  38. Schneider, O. S., Israr, A., and MacLean, K. E. Tactile animation by direct manipulation of grid displays. In Proceedings of the Annual ACM Symposium on User Interface Software & Technology, UIST '15 (2015). Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Seo, J., and Choi, S. Initial study for creating linearly moving vibrotactile sensation on mobile device. In 2010 IEEE Haptics Symposium (March 2010), 67--70. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Shull, P. B., and Damian, D. D. Haptic wearables as sensory replacement, sensory augmentation and trainer - a review. Journal of NeuroEngineering and Rehabilitation 12, 1 (2015), 59.Google ScholarGoogle ScholarCross RefCross Ref
  41. Spence, C., and Ho, C. Tactile and multisensory spatial warning signals for drivers. Haptics, IEEE Transactions on 1, 2 (July 2008), 121--129. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Summers, I. R., Whybrow, J. J., Gratton, D. A., Milnes, P., Brown, B. H., and Stevens, J. C. Tactile information transfer: A comparison of two stimulation sites. The Journal of the Acoustical Society of America 118.Google ScholarGoogle Scholar
  43. Tan, H. Z., Gray, R., Young, J., and Traylor, R. A haptic back display for attentional and directional cueing. Journal of Haptics Research 3 (2003).Google ScholarGoogle Scholar
  44. Ternes, D., and MacLean, K. E. Designing large sets of haptic icons with rhythm. In EuroHaptics, M. Ferre, Ed. (2008). Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Tsukada, K., and Yasumura, M. ActiveBelt: Belt-Type Wearable Tactile Display for Directional Navigation. Springer, Berlin, Heidelberg, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  46. Ueda, S., Uchida, M., Nozawa, A., and Ide, H. A tactile display used phantom sensation with apparent movement together. Electronics and Communications in Japan, Part II: Electronics (2008).Google ScholarGoogle Scholar
  47. Wall, C., and Weinberg, M. S. Balance prostheses for postural control. IEEE Engineering in Medicine and Biology Magazine 22, 2 (2003).Google ScholarGoogle ScholarCross RefCross Ref
  48. White, B. W., Saunders, F. A., Scadden, L., Bach-Y-Rita, P., and Collins, C. C. Seeing with the skin. Perception & Psychophysics 7, 1, 23--27.Google ScholarGoogle Scholar
  49. Xu, C., Israr, A., Poupyrev, I., Bau, O., and Harrison, C. Tactile display for the visually impaired using teslatouch. In CHI '11 Extended Abstracts on Human Factors in Computing Systems, CHI EA '11 (2011). Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Yang, G. H., Ryu, D., Park, S., and Kang, S. Sensory saltation and phantom sensation for vibrotactile display of spatial and directional information. Presence 21, 2 (Feb 2012), 192--202. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Yannier, N., Israr, A., Lehman, J. F., and Klatzky, R. L. FeelSleeve: Haptic feedback to enhance early reading. In Proceedings of Annual ACM Conference on Human Factors in Computing Systems, CHI (2015). Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Personalising vibrotactile displays through perceptual sensitivity adjustment

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader