skip to main content
10.1145/3093172.3093234acmconferencesArticle/Chapter ViewAbstractPublication PagespascConference Proceedingsconference-collections
research-article

Parallelized Dimensional Decomposition for Large-Scale Dynamic Stochastic Economic Models

Authors Info & Claims
Published:26 June 2017Publication History

ABSTRACT

We introduce and deploy a generic, highly scalable computational method to solve high-dimensional dynamic stochastic economic models on high-performance computing platforms. Within an MPI---TBB parallel, nonlinear time iteration framework, we approximate economic policy functions using an adaptive sparse grid algorithm with d-linear basis functions that is combined with a dimensional decomposition scheme. Numerical experiments on "Piz Daint" (Cray XC30) at the Swiss National Supercomputing Centre show that our framework scales nicely to at least 1,000 compute nodes. As an economic application, we compute global solutions to international real business cycle models up to 200 continuous dimensions with significant speedup values over state-of-the-art techniques.

References

  1. Ivo Babuška, Fabio Nobile, and Raúl Tempone. 2007. A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal. 45, 3 (2007), 1005--1034. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Richard E. Bellman. 1961. Adaptive Control Processes: A Guided Tour. Princeton University Press. http://books.google.ch/books?id=POAmAAAAMAAJGoogle ScholarGoogle Scholar
  3. Johannes Brumm, Michael Grill, Felix Kubler, and Karl Schmedders. 2015. Collateral requirements and asset prices. International Economic Review 56, 1 (2015), 1--25.Google ScholarGoogle ScholarCross RefCross Ref
  4. Johannes Brumm, Felix Kubler, and Simon Scheidegger. 2016. Computing equilibria in dynamic stochastic macro-models with heterogeneous agents. Advances in Economics and Econometrics, Eleventh World Congress, Forthcoming (2016).Google ScholarGoogle Scholar
  5. Johannes Brumm, Dmitry Mikushin, Simon Scheidegger, and Olaf Schenk. 2015. Scalable high-dimensional dynamic stochastic economic modeling. Journal of Computational Science 11 (2015), 12--25.Google ScholarGoogle ScholarCross RefCross Ref
  6. Johannes Brumm and Simon Scheidegger. 2015. Using Adaptive Sparse Grids to Solve High-Dimensional Dynamic Models. Working Paper (2015), 1--39.Google ScholarGoogle Scholar
  7. H. J. Bungartz and S. Dirnstorfer. 2003. Multivariate Quadrature on Adaptive Sparse Grids. Computing (Vienna/New York) 71, 1 (2003), 89--114. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Hans-Joachim Bungartz and Michael Griebel. 2004. Sparse grids. Acta Numerica 13 (2004), 147--270.Google ScholarGoogle ScholarCross RefCross Ref
  9. Axel BÃűrsch-Supan, Alexander Ludwig, and Joachim Winter. 2006. Ageing, Pension Reform and Capital Flows: A Multi-Country Simulation Model. Economica 73, 292 (2006), 625--658.Google ScholarGoogle Scholar
  10. J J Dongarra and A J van der Steen. 2012. High-performance computing systems: Status and outlook. Acta Numerica 21 (2012), 379--474.Google ScholarGoogle ScholarCross RefCross Ref
  11. Jesús Fernández-Villaverde, Grey Gordon, Pablo Guerrón-Quintana, and Juan F Rubio-Ramirez. 2015. Nonlinear adventures at the zero lower bound. Journal of Economic Dynamics and Control 57 (2015), 182--204.Google ScholarGoogle ScholarCross RefCross Ref
  12. Jochen Garcke. 2012. Sparse Grids and Applications. (2012), 293. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI: portable parallel programming with the Message-Passing-Interface.Google ScholarGoogle Scholar
  14. Max Gunzburger, Clayton G. Webster, and Guannan Zhang. 2014. An Adaptive Wavelet Stochastic Collocation Method for Irregular Solutions of Partial differential Equations with Random Input Data. Springer, Cham, 137--170.Google ScholarGoogle Scholar
  15. Wouter J. Den Haan, Kenneth L. Judd, and Michel Juillard. 2011. Computational suite of models with heterogeneous agents II: Multi-country real business cycle models. Journal of Economic Dynamics and Control 35, 2 (2011), 175--177. Computational Suite of Models with Heterogeneous Agents II: Multi-Country Real Business Cycle Models.Google ScholarGoogle ScholarCross RefCross Ref
  16. Markus Hegland. 2003. Adaptive sparse grids. Anziam Journal 44 (2003), 335--353.Google ScholarGoogle ScholarCross RefCross Ref
  17. Markus Holtz. 2010. Sparse Grid Quadrature in High Dimensions with Applications in Finance and Insurance. Lecture Notes in Computational Science and Engineering 77 (2010), 1--192.Google ScholarGoogle Scholar
  18. Giles Hooker. 2007. Generalized Functional ANOVA Diagnostics for High-Dimensional Functions of Dependent Variables. Journal of Computational and Graphical Statistics 16, March (2007), 709--732.Google ScholarGoogle ScholarCross RefCross Ref
  19. John D Jakeman and Stephen G Roberts. 2012. Local and dimension adaptive stochastic collocation for uncertainty quantification. In Sparse grids and applications. Springer Berlin Heidelberg, 181--203.Google ScholarGoogle Scholar
  20. Kenneth Judd. 1992. Projection methods for solving aggregate growth models. Journal of Economic Theory 58, 2 (1992), 410--452. http://econpapers.repec.org/RePEc:eee:jetheo:v:58:y:1992:i:2:p:410-452Google ScholarGoogle ScholarCross RefCross Ref
  21. Kenneth L Judd. 1998. Numerical methods in economics. Vol. 1. The MIT press.Google ScholarGoogle Scholar
  22. Aubhik Khan and Julia K Thomas. 2013. Credit Shocks and Aggregate Fluctuations in an Economy with Production Heterogeneity. Journal of Political Economy 121, 6 (2013), 1055--1107.Google ScholarGoogle ScholarCross RefCross Ref
  23. Robert Kollmann, Serguei Maliar, Benjamin A. Malin, and Paul Pichler. 2011. Comparison of solutions to the multi-country Real Business Cycle model. Journal of Economic Dynamics and Control 35, 2 (2011), 186--202.Google ScholarGoogle ScholarCross RefCross Ref
  24. Dirk Krueger and Alexander Ludwig. 2007. On the consequences of demographic change for rates of returns to capital, and the distribution of wealth and welfare. Journal of Monetary Economics 54, 1 (2007), 49--87. http://EconPapers.repec.org/RePEc:eee:moneco:v:54:y:2007:i:1:p:49-87Google ScholarGoogle ScholarCross RefCross Ref
  25. Dirk Krüger and Felix Kubler. 2004. Computing equilibrium in OLG models with stochastic production. Journal of Economic Dynamics and Control 28, 7 (2004), 1411--1436.Google ScholarGoogle ScholarCross RefCross Ref
  26. F. Y. Kuo, I. H. Sloan, G. W. Wasilkowski, and H. Woźniakowski. 2009. On decompositions of multivariate functions. Math. Comp. 79, 270 (2009), 953--966.Google ScholarGoogle ScholarCross RefCross Ref
  27. Genyuan Li and Herschel Rabitz. 2012. General formulation of HDMR component functions with independent and correlated variables. Journal of Mathematical Chemistry 50, 1 (2012), 99--130.Google ScholarGoogle ScholarCross RefCross Ref
  28. G Li, Sw Wang, and H Rabitz. 2000. High Dimensional Model Representations (HDMR): Concepts and applications. (2000).Google ScholarGoogle Scholar
  29. Lars Ljungqvist and Thomas J Sargent. 2004. Recursive macroeconomic theory. Mit Press.Google ScholarGoogle Scholar
  30. Xiang Ma and Nicholas Zabaras. 2009. An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential equations. J. Comput. Phys. 228, 8 (2009), 3084--3113. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Xiang Ma and Nicholas Zabaras. 2010. An adaptive high-dimensional stochastic model representation technique for the solution of stochastic partial differential equations. J. Comput. Phys. 229, 10 (2010), 3884--3915. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Lilia Maliar and Serguei Maliar. 2014. Chapter 7 - Numerical Methods for Large-Scale Dynamic Economic Models. In Handbook of Computational Economics Vol. 3, Karl Schmedders and Kenneth L. Judd (Eds.). Handbook of Computational Economics, Vol. 3. Elsevier, 325--477.Google ScholarGoogle Scholar
  33. Lilia Maliar and Serguei Maliar. 2015. Merging simulation and projection approaches to solve high-dimensional problems with an application to a new Keynesian model. Quantitative Economics 6, 1 (2015), 1--47.Google ScholarGoogle ScholarCross RefCross Ref
  34. Alin Murarasu, Josef Weidendorfer, Gerrit Buse, Daniel Butnaru, and Dirk Pflüeger. 2011. Compact Data Structure and Parallel Alogrithms for the Sparse Grid Technique. In 16th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Fabio Nobile, Raúl Tempone, and Clayton G Webster. 2008. A sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal. 46, 5 (2008), 2309--2345. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Dirk Pflüger. 2010. Spatially Adaptive Sparse Grids for High-Dimensional Problems. 1--194 pages. http://www5.in.tum.de/pub/pflueger10spatially.pdfGoogle ScholarGoogle Scholar
  37. Herschel Rabitz, ÃŰ Alis, and ÃŰmer F. AlÄśş. 1999. General foundations of high-dimensional model representations. J. Math. Chem. 25, 2--3 (1999), 197--233.Google ScholarGoogle ScholarCross RefCross Ref
  38. Sharif Rahman. 2014. A Generalized ANOVA Dimensional Decomposition for Dependent Probability Measures. arXiv:1408.0722v1 {math.NA} 52242 (2014), 27. http://arxiv.org/abs/1408.0722Google ScholarGoogle Scholar
  39. James. Reinders and James. 2007. Intel threading building blocks: outfitting C++ for multi-core processor parallelism. O'Reilly. 303 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Serdar Sayan. 2005. HeckscherâĂŞOhlin revisited: implications of differential population dynamics for trade within an overlapping generations framework. Journal of Economic Dynamics and Control 29, 9 (2005), 1471--1493.Google ScholarGoogle ScholarCross RefCross Ref
  41. Simon Scheidegger and Adrien Treccani. 2016. Pricing American Options Under High-Dimensional Models with Recursive Adaptive Sparse Expectations. Available at SSRN 2867926 (2016).Google ScholarGoogle Scholar
  42. I. M. Sobol. 2003. Theorems and examples on high dimensional model representation. Reliability Engineering & System Safety 79, 2 (2003), 187--193.Google ScholarGoogle Scholar
  43. Nancy Stokey, Robert Lucas, and Edward Prescott. 1989. Recursive methods in economic dynamics. Cambridge MA (1989).Google ScholarGoogle Scholar
  44. Harald Uhlig. 1995. A toolkit for analyzing nonlinear dynamic stochastic models easily. Technical Report.Google ScholarGoogle Scholar
  45. Andreas Wächter, Âů Lorenz, and T Biegler. 2005. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program., Ser. A (2005).Google ScholarGoogle Scholar
  46. X. Wang. 2008. On the approximation error in high dimensional model representation. Proceedings of the 2008 Winter Simulation Conference 1 (2008), 453--462. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Xiu Yang, Minseok Choi, Guang Lin, and George Em Karniadakis. 2012. Adaptive ANOVA decomposition of stochastic incompressible and compressible flows. J. Comput. Phys. 231, 4 (2012), 1587--1614. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Parallelized Dimensional Decomposition for Large-Scale Dynamic Stochastic Economic Models

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader