skip to main content
10.1145/3070607.3070612acmconferencesArticle/Chapter ViewAbstractPublication PagesmodConference Proceedingsconference-collections
research-article

Benchmarking Data Flow Systems for Scalable Machine Learning

Published:14 May 2017Publication History

ABSTRACT

Distributed data flow systems such as Apache Spark or Apache Flink are popular choices for scaling machine learning algorithms in production. Industry applications of large scale machine learning such as click-through rate prediction rely on models trained on billions of data points which are both highly sparse and high-dimensional. Existing Benchmarks attempt to assess the performance of data flow systems such as Apache Flink, Spark or Hadoop with non-representative workloads such as WordCount, Grep or Sort. They only evaluate scalability with respect to data set size and fail to address the crucial requirement of handling high dimensional data.

We introduce a representative set of distributed machine learning algorithms suitable for large scale distributed settings which have close resemblance to industry-relevant applications and provide generalizable insights into system performance. We implement mathematically equivalent versions of these algorithms in Apache Flink and Apache Spark, tune relevant system parameters and run a comprehensive set of experiments to assess their scalability with respect to both: data set size and dimensionality of the data. We evaluate the systems for data up to four billion data points and 100 million dimensions. Additionally we compare the performance to single-node implementations to put the scalability results into perspective.

Our results indicate that while being able to robustly scale with increasing data set sizes, current state of the art data flow systems are surprisingly inefficient at coping with high dimensional data, which is a crucial requirement for large scale machine learning algorithms.

References

  1. http://peel-framework.org/.Google ScholarGoogle Scholar
  2. https://flink.apache.org/.Google ScholarGoogle Scholar
  3. https://hadoop.apache.org/.Google ScholarGoogle Scholar
  4. https://mahout.apache.org/.Google ScholarGoogle Scholar
  5. https://spark.apache.org/.Google ScholarGoogle Scholar
  6. A. Alexandrov, R. Bergmann, S. Ewen, J.-C. Freytag, F. Hueske, A. Heise, O. Kao, M. Leich, U. Leser, V. Markl, F. Naumann, M. Peters, A. Rheinländer, M. J. Sax, S. Schelter, M. Höger, K. Tzoumas, and D. Warneke. The stratosphere platform for big data analytics. The VLDB Journal, 23(6), Dec. 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. T. Brants, A. C. Popat, P. Xu, F. J. Och, J. Dean, and G. Inc. Large language models in machine translation. In EMNLP, pages 858--867, 2007.Google ScholarGoogle Scholar
  8. Z. Cai, Z. J. Gao, S. Luo, L. L. Perez, Z. Vagena, and C. Jermaine. A comparison of platforms for implementing and running very large scale machine learning algorithms. In Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data, SIGMOD '14, pages 1371--1382, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. k. Caninil. Sibyl: A system for large scale supervised machine learning.Google ScholarGoogle Scholar
  10. P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and K. Tzoumas. Apache FlinkTM: Stream and Batch Processing in a Single Engine. IEEE Data Eng. Bull., 38(4):28--38, 2015.Google ScholarGoogle Scholar
  11. J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on Large Clusters. In OSDI, pages 137--150, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. S. Ewen, K. Tzoumas, M. Kaufmann, and V. Markl. Spinning fast iterative data flows. Proc. VLDB Endow., 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. A. Halevy, P. Norvig, and F. Pereira. The unreasonable effectiveness of data. IEEE Intelligent Systems, 24(2), Mar. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. HiBench. https://github.com/intel-hadoop/HiBench.Google ScholarGoogle Scholar
  15. L. Jimmy and A. Kolcz. Large-scale machine learning at twitter. SIGMOD 2012, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. A. Kumar, R. McCann, J. Naughton, and J. M. Patel. Model selection management systems: The next frontier of advanced analytics. SIGMOD Records, 44(4), May 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski, J. Long, E. J. Shekita, and B.-Y. Su. Scaling distributed machine learning with the parameter server. In OSDI, volume 14, pages 583--598, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. C.-J. Lin and J. J. Moré. Newton's method for large bound-constrained optimization problems. SIAM J. on Optimization, 9(4), Apr. 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. D. C. Liu and J. Nocedal. On the limited memory bfgs method for large scale optimization. Math. Program., 1989.Google ScholarGoogle ScholarCross RefCross Ref
  20. O. C. Marcu, A. Costan, G. Antoniu, and M. S. Pérez-Hernéndez. Spark versus flink: Understanding performance in big data analytics frameworks. In IEEE CLUSTER 2016, pages 433--442, Sept 2016.Google ScholarGoogle ScholarCross RefCross Ref
  21. H. B. McMahan, G. Holt, D. Sculley, M. Young, D. Ebner, J. Grady, L. Nie, T. Phillips, E. Davydov, D. Golovin, S. Chikkerur, D. Liu, M. Wattenberg, A. M. Hrafnkelsson, T. Boulos, and J. Kubica. Ad click prediction: A view from the trenches. In KDD '13. ACM, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. F. McSherry, M. Isard, and D. G. Murray. Scalability! but at what cost? In USENIX HOTOS'15. USENIX Association, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. F. Niu, B. Recht, C. Re, and S. J. Wright. Hogwild!: A lock-free approach to parallelizing stochastic gradient descent. In NIPS 2011, USA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. M. Richardson, E. Dominowska, and R. Ragno. Predicting clicks: Estimating the click-through rate for new ads. In WWW '07. ACM, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. S. Schelter, C. Boden, M. Schenck, A. Alexandrov, and V. Markl. Distributed matrix factorization with mapreduce using a series of broadcast-joins. ACM RecSys 2013, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. S. Schelter, V. Satuluri, and R. Zadeh. Factorbird - a Parameter Server Approach to Distributed Matrix Factorization. Distributed Machine Learning and Matrix Computations workshop at NIPS 2014, 2014.Google ScholarGoogle Scholar
  27. J. Shi, Y. Qiu, U. F. Minhas, L. Jiao, C. Wang, B. Reinwald, and F. Özcan. Clash of the titans: Mapreduce vs. spark for large scale data analytics. Proc. VLDB Endow., 8(13), Sept. 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. J. Veiga, R. R. Expósito, X. C. Pardo, G. L. Taboada, and J. Tourifio. Performance evaluation of big data frameworks for large-scale data analytics. In IEEE BigData 2016, pages 424--431, Dec 2016.Google ScholarGoogle ScholarCross RefCross Ref
  29. M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin, S. Shenker, and I. Stoica. Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing. NSDI'12, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  1. Benchmarking Data Flow Systems for Scalable Machine Learning

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      BeyondMR'17: Proceedings of the 4th ACM SIGMOD Workshop on Algorithms and Systems for MapReduce and Beyond
      May 2017
      76 pages
      ISBN:9781450350198
      DOI:10.1145/3070607

      Copyright © 2017 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 14 May 2017

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed limited

      Acceptance Rates

      BeyondMR'17 Paper Acceptance Rate9of17submissions,53%Overall Acceptance Rate19of36submissions,53%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader