skip to main content
10.1145/3020165.3022140acmconferencesArticle/Chapter ViewAbstractPublication PagesirConference Proceedingsconference-collections
short-paper

Web-Retrieval Supported Argument Space Exploration

Published:07 March 2017Publication History

ABSTRACT

Solid decision making should be ideally based on clear arguments that can be justified by trustworthy information sources. However, argument spaces can quickly get quite complex and it is very often hard to trace the line of arguments found in literature or social media such as blogs and forums. In this paper, we propose a framework for a decision supporting interactive information retrieval system using methods for argument exploration based on textual documents. This concept is supported by a prototype that focuses on the actual analysis of the retrieved arguments in order to obtain a justified decision. For that we use a simplified argumentation graph with nodes as arguments and simple attacking and supporting relations. A web-based plausibility value is propagated (using ranked-based argumentation semantics) through the network for estimating the quality of the arguments. This is based on a web search for documents that support these arguments. The final decision can further be supported by chosing certain preferred interpretations of an abstract dialectical framework, leading to an integrated view of searching, creating, analysing and deciding.

References

  1. F. Bex, S. Modgil, H. Prakken, and C. Reed. On logical specifications of the Argument Interchange Format. J. Log. Comput., 23(5):951--989, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  2. G. Brewka, S. Ellmauthaler, H. Strass, J. P. Wallner, and S. Woltran. Abstract Dialectical Frameworks Revisited. In Proc. of IJCA, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. S. Buckingham Shum. The Roots of Computer Supported Argument Visualization. In Visualizing Argumentation: Software Tools for Collaborative and Educational Sense-Making, pages 3--24, London, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. E. W. De Luca, S. Hauke, A. Nürnberger, and S. Schlechtweg. Using Multilingual Ontologies for Adaptive Web-Based Language Exploration. In Proc. of SW-EL 06 (part of AH 2006), pages 35--44, 2006.Google ScholarGoogle Scholar
  5. P. M. Dung. On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic Reasoning, Logic Programming and n-Person Games. Artif. Intell., 77(2):321--358, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. O. Etzioni, M. Cafarella, D. Downey, S. Kok, A.-M. Popescu, T. Shaked, S. Soderland, D. S. Weld, and A. Yates. Web-scale information extraction in Knowitall: (preliminary results). In Proc. of WWW. ACM, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. A. Gürkan, L. Iandoli, M. Klein, and G. Zollo. Mediating debate through on-line large-scale argumentation: Evidence from the field. Information Sciences, 180(19):3686--3702, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. S. Haun, T. Gossen, A. Nürnberger, T. Kötter, K. Thiel, and M. R. Berthold. On the Integration of Graph Exploration and Data Analysis: The Creative Exploration Toolkit. In Bisociative Knowledge Discovery, pages 301--312. Springer, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. S. Haun, M. Nitsche, and A. Nürnberger. Interactive Visualization of Continuous Node Features in Graphs. In Proc. Works. on Explorative Analytics of Information Networks (part of ECML/PKDD), pages 98--106, 2009.Google ScholarGoogle Scholar
  10. M. A. Hearst. Automatic acquisition of hyponyms from large text corpora. In Proc. of COLING, 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. J. Lawrence, F. Bex, C. Reed, and M. Snaith. AIFdb: Infrastructure for the argument web. In Proc. of Computational Models of Argument (COMMA), 2012.Google ScholarGoogle Scholar
  12. M. Lippi and P. Torroni. Argumentation Mining: State of the Art and Emerging Trends. ACM Transactions on Internet Technologies, 16(2):10:1--10:25, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. S. Modgil and H. Prakken. The ASPIC+ framework for structured argumentation: a tutorial. Argument & Computation, 5(1):31--62, 2014Google ScholarGoogle ScholarCross RefCross Ref
  14. T. Mossakowski and F. Neuhaus. Bipolar weighted argumentation graphs. http://arxiv.org/abs/1611.08572.Google ScholarGoogle Scholar
  15. A. Peldszus and M. Stede. From Argument Diagrams to Argumentation Mining in Texts: A Survey. IJCINI, 7(1):1--31, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. R. Pienta, J. Abello, M. Kahng, and D. H. Chau. Scalable graph exploration and visualization: Sensemaking challenges and opportunities. In Proc. Intl. Conf. on Big Data and Smart Comp. (BIGCOMP), pages 271--278. IEEE, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  17. H. Prakken. An abstract framework for argumentation with structured arguments. Argument & Computation, 1(2):93--124, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  18. I. Rahwan and C. Reed. The Argument Interchange Format. In Argumentation in Artificial Intelligence, chapter 19, pages 383--402. Springer, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  19. M. Snaith, J. Lawrence, and C. Reed. Mixed initiative argument in public deliberation. In Proc. of 4th Intl. Conf. on Online Deliberation, 2010.Google ScholarGoogle Scholar
  20. M. Snaith and C. Reed. TOAST: Online ASPIC+ implementation. In Proc. of Computational Models of Argument (COMMA), 2012.Google ScholarGoogle Scholar
  21. S. W. van den Braak, H. v. Oostendorp, H. Prakken, and G. A. Vreeswijk. A critical review of argument visualization tools: Do users become better reasoners? In Workshop Notes of the ECAI-06 Workshop on CMNA, pages 67--75, 2008.Google ScholarGoogle Scholar
  22. F. van Ham and A. Perer. Search, Show Context, Expand on Demand: Supporting Large Graph Exploration with Degree-of-Interest. IEEE Trans. on Visual. and Comp. Graphics, 15(6):953--960, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Web-Retrieval Supported Argument Space Exploration

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        CHIIR '17: Proceedings of the 2017 Conference on Conference Human Information Interaction and Retrieval
        March 2017
        454 pages
        ISBN:9781450346771
        DOI:10.1145/3020165
        • Conference Chairs:
        • Ragnar Nordlie,
        • Nils Pharo,
        • Program Chairs:
        • Luanne Freund,
        • Birger Larsen,
        • Dan Russel

        Copyright © 2017 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 7 March 2017

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • short-paper

        Acceptance Rates

        CHIIR '17 Paper Acceptance Rate10of48submissions,21%Overall Acceptance Rate55of163submissions,34%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader