skip to main content
research-article
Free Access

HACC: extreme scaling and performance across diverse architectures

Authors Info & Claims
Published:20 December 2016Publication History
Skip Abstract Section

Abstract

Supercomputing is evolving toward hybrid and accelerator-based architectures with millions of cores. The Hardware/Hybrid Accelerated Cosmology Code (HACC) framework exploits this diverse landscape at the largest scales of problem size, obtaining high scalability and sustained performance. Developed to satisfy the science requirements of cosmological surveys, HACC melds particle and grid methods using a novel algorithmic structure that flexibly maps across architectures, including CPU/GPU, multi/many-core, and Blue Gene systems. In this Research Highlight, we demonstrate the success of HACC on two very different machines, the CPU/GPU system Titan and the BG/Q systems Sequoia and Mira, attaining very high levels of scalable performance. We demonstrate strong and weak scaling on Titan, obtaining up to 99.2% parallel efficiency, evolving 1.1 trillion particles. On Sequoia, we reach 13.94 PFlops (69.2% of peak) and 90% parallel efficiency on 1,572,864 cores, with 3.6 trillion particles, the largest cosmological benchmark yet performed. HACC design concepts are applicable to several other supercomputer applications.

References

  1. Bhattacharya, S., Habib, S., Heitmann, K., Vikhlinin, A. Dark matter Halo profiles of massive clusters: Theory versus observations. Astrophys. J. 766 (2013), 32.Google ScholarGoogle ScholarCross RefCross Ref
  2. Bryan, G.L., Norman, M.L. In 12th Kingston Meeting on Theoretical Astrophysics, Proceedings of Meeting Held in Halifax; Nova Scotia (ASP Conference Series # 123), D.A. Clarke and M. Fall, eds. 1996; see also O'Shea, B.W., Nagamine, K., Springel, V., Hernquist, L., Norman, M.L. Astrophys. J. Supp. 160 (2005), 1.Google ScholarGoogle Scholar
  3. Couchman, H.M.P., Thomas, P.A., Pearce, F.R. Hydra: An adaptive-mesh implementation of P 3M-SPH Astrophys. J. 452, 797 (1995).Google ScholarGoogle Scholar
  4. For a review of cosmological simulation methods, see also Dolag, K., Borgani, S., Schindler, S., Diaferio, A., Bykov, A.M. Space Sci. Rev. 134 (2008), 229.Google ScholarGoogle Scholar
  5. Fryxell, B., et al. FLASH: An adaptive mesh hydrodynamics code for modeling astrophysical thermonuclear flashes. Astrophys. J. Supp. 131 (2000), 273.Google ScholarGoogle ScholarCross RefCross Ref
  6. Gafton, E., Rosswog, S. A fast recursive coordinate bisection tree for neighbour search and gravity. Mon. Not. R. Astron. Soc. 418 (2011), 770.Google ScholarGoogle ScholarCross RefCross Ref
  7. Habib, S., Morozov, V., Finkel, H., Pope, A., Heitmann, K., Kumaran, K., Peterka, T., Insley, J., Daniel, D., Fasel, P., Frontiere, N., Lukić, Z. arXiv:1211.4864, Supercomputing 2012.Google ScholarGoogle Scholar
  8. Habib, S., Pope, A., Finkel, H., Frontiere, N., Heitmann, K., Daniel, D., Fasel, P., Morozov, V., Zagaris, G., Peterka, T., Vishwanath, V., Lukić, Z., Sehrish, S., Liao, W.-K. HACC: Simulating sky surveys on state-of-the-art supercomputing architectures. New Astron. 42 (2016), 49 arXiv:1410.2805 {astro-ph.IM}.Google ScholarGoogle ScholarCross RefCross Ref
  9. Habib, S., Pope, A., Lukić, Z., Daniel, D., Fasel, P., Desai, N., Heitmann, K., Hsu, C.-H., Ankeny, L., Mark, G., Bhattacharya, S., Ahrens, J. Hybrid petacomputing meets cosmology: The Roadrunner Universe project. J. Phys. Conf. Ser. 180 (2009), 012019.Google ScholarGoogle ScholarCross RefCross Ref
  10. Hamming, R.W. Digital Filters. Dover, Publications, Mineola, New York 1998.Google ScholarGoogle Scholar
  11. Heitmann, K., Frontiere, N., Sewell, C., Habib, S., Pope, A., Finkel, H., Rizzi, S., Insley, J., Bhattacharya, S. The Q continuum simulation: Harnessing the power of GPU accelerated supercomputers. J. - Astrophys. J. Supp. 219 (2015), 34 arXiv:1411.3396 {astro-ph.CO}.Google ScholarGoogle Scholar
  12. Heitmann, K., Higdon, D., White, M., Habib, S., Williams, B.J., Lawrence, E., Wagner, C. The Coyote universe. II. Cosmological models and precision emulation of the nonlinear matter power spectrum Astrophys. J. 705 (2009), 156.Google ScholarGoogle Scholar
  13. Heitmann, K., Lukić, Z., Fasel, P., Habib, S., Warren, M.S., White, M., Ahrens, J., Ankeny, L., Armstrong, R., O'Shea, B., Ricker, P.M., Springel, V., Stadel, J., Trac, H. The cosmic code comparison project. Comput. Sci. Dis. 1 (2008), 015003.Google ScholarGoogle ScholarCross RefCross Ref
  14. Heitmann, K., Ricker, P.M., Warren, M.S., Habib, S. Robustness of cosmological simulations. I. Large-scale Structure. Astrophys. J. Supp. 160 (2005), 28.Google ScholarGoogle ScholarCross RefCross Ref
  15. Hockney, R.W., Eastwood, J.W. Computer Simulation Using Particles. Adam Hilger, New York, 1988. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Peebles, P.J.E., Structure of the coma cluster of galaxies. Astron. J. 75 (1970), 13.Google ScholarGoogle ScholarCross RefCross Ref
  17. Peebles, P.J.E. The Large-Scale Structure of the Universe. Princeton University Press, Princeton, New Jersey 1980.Google ScholarGoogle Scholar
  18. Pfalzner, S., Gibbon, P. Many-Body Tree Methods in Physics. Cambridge University Press, 1996; see also Barnes, J., Hut, P. Nature 324, 446 (1986); Warren, M.S., Salmon, J.K. Technical Paper, Supercomputing, Cambridge University Press, New York, USA 1993.Google ScholarGoogle Scholar
  19. Pope, A., Habib, S., Lukic, Z., Daniel, D., Fasel, P., Desai, N., Heitmann, K. Comput. Sci. Eng. 12 (2010), 17.Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. The accelerated universe. Power, C., Navarro, J.F., Jenkins, A., Frenk, C.S., White, S.D.M., Springel, V., Stadel, J., Quinn, T. The inner structure of ACDM haloes - I. A numerical convergence study. Mon. Not. R. Astron. Soc. 338 (2003), 14.Google ScholarGoogle Scholar
  21. Shandarin, S.F., Zeldovich, Ya.B. The large-scale structure of the universe: Turbulence, intermittency, structures in a self-gravitating medium. Rev. Mod. Phys. 61 (1989), 185.Google ScholarGoogle ScholarCross RefCross Ref
  22. Springel, V. The cosmological simulation code GADGET-2. Mon. Not. R. Astron. Soc. 364 (2005), 1105.Google ScholarGoogle ScholarCross RefCross Ref
  23. Teyssier, R. Cosmological hydrodynamics with adaptive mesh refinement. A new high resolution code called RAMSES. A&A 385 (2002), 337.Google ScholarGoogle ScholarCross RefCross Ref
  24. White, M. The mass of a halo. Astron. and Astrophys. 367 (2001), 27.Google ScholarGoogle ScholarCross RefCross Ref
  25. White, M., Pope, A., Carlson, J., Heitmann, K., Habib, S., Fasel, P., Daniel, D., Lukić, Z. Particle mesh simulations of the Lyα forest and the signature of Baryon acoustic oscillations in the intergalactic medium. Astrophys. J. 713 (2010), 383.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. HACC: extreme scaling and performance across diverse architectures

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image Communications of the ACM
        Communications of the ACM  Volume 60, Issue 1
        January 2017
        95 pages
        ISSN:0001-0782
        EISSN:1557-7317
        DOI:10.1145/3028256
        • Editor:
        • Moshe Y. Vardi
        Issue’s Table of Contents

        Copyright © 2016 Owner/Author

        This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike International 4.0 License.

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 20 December 2016

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      HTML Format

      View this article in HTML Format .

      View HTML Format