skip to main content
10.1145/3009977.3010053acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicvgipConference Proceedingsconference-collections
research-article

Robust registration of Mouse brain slices with severe histological artifacts

Published:18 December 2016Publication History

ABSTRACT

Brain mapping research is facilitated by first aligning digital images of mouse brain slices to standardized atlas framework such as the Allen Reference Atlas (ARA). However, conventional processing of these brain slices introduces many histological artifacts such as tears and missing regions in the tissue, which make the automatic alignment process extremely challenging. We present an end-to-end fully automatic registration pipeline for alignment of digital images of mouse brain slices that may have histological artifacts, to a standardized atlas space. We use a geometric approach where we first align the bounding box of convex hulls of brain slice contours and atlas template contours, which are extracted using a variant of Canny edge detector. We then detect the artifacts using Constrained Delaunay Triangulation (CDT) and remove them from the contours before performing global alignment of points using iterative closest point (ICP). This is followed by a final non-linear registration by solving the Laplace's equation with Dirichlet boundary conditions. We tested our algorithm on 200 mouse brain slice images including slices acquired from conventional processing techniques having major histological artifacts, and from serial two-photon tomography (STPT) with no major artifacts. We show significant improvement over other registration techniques, both qualitatively and quantitatively, in all slices especially on slices with significant histological artifacts.

References

  1. W. S. I. Ali et al. Registering coronal histological 2-d sections of a rat brain with coronal sections of a 3-d brain atlas using geometric curve invariants and b-spline representation. Medical Imaging, IEEE Transactions on, 17(6):957--966, 1998.Google ScholarGoogle Scholar
  2. N. Amenta, M. Bern, and D. Eppstein. The crust and the β-skeleton: Combinatorial curve reconstruction. Graphical models and image processing, 60(2):125--135, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. L. Bertrand and J. Nissanov. The neuroterrain 3d mouse brain atlas. Frontiers in neuroinformatics, 2:3, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  4. L. P. Chew. Constrained delaunay triangulations. Algorithmica, 4(1--4):97--108, 1989.Google ScholarGoogle Scholar
  5. A. C. Crecelius, D. S. Cornett, R. M. Caprioli, et al. Three-dimensional visualization of protein expression in mouse brain structures using imaging mass spectrometry. J. Am. Soc. Mass Spectrom., 16(7):1093--1099, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  6. J. Dauguet, T. Delzescaux, F. Condé, et al. Three-dimensional reconstruction of stained histological slices and 3d non-linear registration with in-vivo mri for whole baboon brain. J. Neurosci. Meth., 164(1):191--204, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  7. N. Gelfand et al. Robust global registration. In SGP, volume 2, pages 197--206, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. S. Gottschalk, M. C. Lin, and D. Manocha. Obbtree: A hierarchical structure for rapid interference detection. In Proceedings of Annual conference on Computer graphics and interactive techniques, pages 171--180. ACM, 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. A. Hess et al. A new method for reliable and efficient reconstruction of 3d images from autoradiographs of brain sections. J. Neurosci. Meth., 84(1):77--86, 1998.Google ScholarGoogle ScholarCross RefCross Ref
  10. L. S. Hibbard and R. A. Hawkins. Objective image alignment for three-dimensional reconstruction of digital autoradiograms. J. Neurosci. Meth., 26(1):55--74, 1988.Google ScholarGoogle ScholarCross RefCross Ref
  11. I. Jolliffe. Principal component analysis. Wiley Online Library, 2002.Google ScholarGoogle Scholar
  12. T. Ju, J. Warren, G. Eichele, C. Thaller, et al. A geometric database for gene expression data. In Symp. on Geometry Processing (SGP), pages 166--176, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. L. M. Kindle, I. A. Kakadiaris, T. Ju, and J. P. Carson. A semiautomated approach for artefact removal in serial tissue cryosections. J. Microsc., 241(2):200--206, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  14. S. Klein, M. Staring, et al. Elastix: a toolbox for intensity-based medical image registration. Medical Imaging, IEEE Transactions on, 29(1):196--205, 2010.Google ScholarGoogle Scholar
  15. L. Kuan, Y. Li, C. Lau, D. Feng, A. Bernard, et al. Neuroinformatics of the allen mouse brain connectivity atlas. Methods, 73:4--17, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  16. E. S. Lein, M. J. Hawrylycz, N. Ao, et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature, 445(7124):168--176, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  17. D. Levin. The approximation power of moving least-squares. Math. of Computation, 67(224):1517--1531, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Y. Ma et al. Three-dimensional digital atlas database of adult c57bl/6j mouse brain by magnetic resonance microscopy. Neuroscience, 135(4):1203--1215, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  19. J. B. Maintz et al. A survey of medical image registration. Med Image Anal, 2(1):1--36, Mar 1998.Google ScholarGoogle ScholarCross RefCross Ref
  20. K. Mosaliganti, T. Pan, R. Sharp, et al. Registration and 3d visualization of large microscopy images. In SPIE Medical imaging, pages 61442V--61442V. International Society for Optics and Photonics, 2006.Google ScholarGoogle Scholar
  21. L. Ng et al. Automated high-throughput registration for localizing 3d mouse brain gene expression using itk. In Insight J. MICCAI Workshop, 2005.Google ScholarGoogle Scholar
  22. C. Nikou et al. Robust statistics-based global energy function for alignment of serially acquired autoradiographic sections. J. Neurosci. Meth., 124(1):93--102, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  23. S. W. Oh, J. A. Harris, L. Ng, B. Winslow, N. Cain, et al. A mesoscale connectome of the mouse brain. Nature, 508(7495):207--214, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  24. N. Otsu. A threshold selection method from gray-level histograms. Automatica, 11(285--296):23--27, 1975.Google ScholarGoogle Scholar
  25. P. Pérez, M. Gangnet, and A. Blake. Poisson image editing. In ACM Transactions on Graphics (TOG), volume 22, pages 313--318. ACM, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. J. P. Pluim, J. A. Maintz, et al. Mutual-information-based registration of medical images: a survey. Medical Imaging, IEEE Transactions on, 22(8):986--1004, 2003.Google ScholarGoogle Scholar
  27. X. Qiu, T. Pridmore, and A. Pitiot. Correcting distorted histology slices for 3d reconstruction. Med Image Underst Anal, 2009.Google ScholarGoogle Scholar
  28. T. Ragan, L. R. Kadiri, et al. Serial two-photon tomography for automated ex vivo mouse brain imaging. Nature methods, 9(3):255--258, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  29. A. Rangarajan, H. Chui, et al. A robust point matching algorithm for autoradiograph alignment. Medical Image Analysis, 1(4):379--398, 1997.Google ScholarGoogle ScholarCross RefCross Ref
  30. S. J. Sawiak, G. B. Williams, N. I. Wood, et al. Spmmouse: A new toolbox for spm in the animal brain. In ISMRM 17th Scientific Meeting & Exhibition, April, pages 18--24, 2009.Google ScholarGoogle Scholar
  31. D. W. Scott. On optimal and data-based histograms. Biometrika, 66(3):605--610, 1979.Google ScholarGoogle ScholarCross RefCross Ref
  32. Y. Sun et al. Cell-type-specific circuit connectivity of hippocampal ca1 revealed through cre-dependent rabies tracing. Cell reports, 7(1):269--280, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  33. D. A. Vousden, J. Epp, H. Okuno, et al. Whole-brain mapping of behaviourally induced neural activation in mice. Brain Structure and Function, pages 1--15, 2014.Google ScholarGoogle Scholar
  34. P. A. Yushkevich, B. B. Avants, L. Ng, et al. 3d mouse brain reconstruction from histology using a coarse-to-fine approach. In Biomedical Image Registration, pages 230--237. Springer, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. W. Zhao, T. Y. Young, and M. D. Ginsberg. Registration and three-dimensional reconstruction of autoradiographic images by the disparity analysis method. Medical Imaging, IEEE Transactions on, 12(4):782--791, 1993.Google ScholarGoogle Scholar

Index Terms

  1. Robust registration of Mouse brain slices with severe histological artifacts

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Other conferences
          ICVGIP '16: Proceedings of the Tenth Indian Conference on Computer Vision, Graphics and Image Processing
          December 2016
          743 pages
          ISBN:9781450347532
          DOI:10.1145/3009977

          Copyright © 2016 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 18 December 2016

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

          Acceptance Rates

          ICVGIP '16 Paper Acceptance Rate95of286submissions,33%Overall Acceptance Rate95of286submissions,33%

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader