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[bookmark: abstract]Skip Abstract SectionAbstract

We present a polynomial time approximation scheme for Euclidean TSP in fixed dimensions. For every fixed c > 1 and given any n nodes in ℛ2, a randomized version of the scheme finds a (1 + 1/c)-approximation to the optimum traveling salesman tour in O(n(log n)O(c)) time. When the nodes are in ℛd, the running time increases to O(n(log n)(O(√c))d-1). For every fixed c,  d the running time is n · poly(logn), that is nearly linear in n. The algorithmm can be derandomized, but this increases the running time by a factor O(nd). The previous best approximation algorithm for the problem (due to Christofides) achieves a 3/2-aproximation in polynomial time.
We also give similar approximation schemes for some other NP-hard Euclidean problems: Minimum Steiner Tree, k-TSP, and k-MST. (The running times of the algorithm for k-TSP and k-MST involve an additional multiplicative factor k.) The previous best approximation algorithms for all these problems  achieved a constant-factor approximation. We also give efficient approximation schemes for Euclidean Min-Cost Matching, a problem that can be solved exactly in polynomial time.
All our algorithms also work, with almost no modification, when distance is measured using any geometric norm (such as ℓp for p ≥ 1 or other Minkowski norms). They also have simple parallel (i.e., NC) implementations.
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