skip to main content
10.1145/2984511.2984550acmconferencesArticle/Chapter ViewAbstractPublication PagesuistConference Proceedingsconference-collections
research-article

RealPen: Providing Realism in Handwriting Tasks on Touch Surfaces using Auditory-Tactile Feedback

Published:16 October 2016Publication History

ABSTRACT

We present RealPen, an augmented stylus for capacitive tablet screens that recreates the physical sensation of writing on paper with a pencil, ball-point pen or marker pen. The aim is to create a more engaging experience when writing on touch surfaces, such as screens of tablet computers. This is achieved by regenerating the friction-induced oscillation and sound of a real writing tool in contact with paper. To generate realistic tactile feedback, our algorithm analyzes the frequency spectrum of the friction oscillation generated when writing with traditional tools, extracts principal frequencies, and uses the actuator's frequency response profile for an adjustment weighting function. We enhance the realism by providing the sound feedback aligned with the writing pressure and speed. Furthermore, we investigated the effects of superposition and fluctuation of several frequencies on human tactile perception, evaluated the performance of RealPen, and characterized users' perception and preference of each feedback type.

Skip Supplemental Material Section

Supplemental Material

uist3095-file3.mp4

mp4

58.6 MB

p195-cho.mp4

mp4

192.9 MB

References

  1. Akay, A. 2002. Acoustics of friction. The Journal of the Acoustical Society of America. 111, 4, 1525--1548. Google ScholarGoogle ScholarCross RefCross Ref
  2. Andersen, T.H. and Zhai, S. 2008. Writing with Music: Exploring the Use of Auditory Feedback in Gesture Interfaces. ACM Trans. Appl. Percept. 7, 3, 17:1--17:24. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Arasan, A., Basdogan, C. and Sezgin, T.M. 201 Haptic stylus with inertial and vibro-tactile feedback. Proc. of WHC '13. IEEE, 425--430.Google ScholarGoogle Scholar
  4. Bau, O., Poupyrev, I., Israr, A. and Harrison, C. 2010. TeslaTouch: Electrovibration for Touch Surfaces. Proc. of UIST '10. ACM, 283--292. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Baxter, B., Scheib, V., Lin, M.C. and Manocha, D. 2001. DAB: Interactive Haptic Painting with 3D Virtual Brushes. Proc. of SIGGRAPH '01. ACM, 461--468. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Biet, M., Giraud, F. and Lemaire-Semail, B. 2007. Squeeze film effect for the design of an ultrasonic tactile plate. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 54, 12, 2678--2688. Google ScholarGoogle ScholarCross RefCross Ref
  7. Brink, A.A., Smit, J., Bulacu, M.L. and Schomaker, L.R.B. 2012. Writer identification using directional ink-trace width measurements. Pattern Recognition. 45, 1, 162--171. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Chang, A. and O'Sullivan, C. 2005. Audio-haptic Feedback in Mobile Phones. Proc. of CHI EA '05. ACM, 1264--1267. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Chen, D., Song, A. and Tian, L. 2015. A novel miniature multi-mode haptic pen for image interaction on mobile terminal. Proc. of HAVE '15. IEEE, 1--6. Google ScholarGoogle ScholarCross RefCross Ref
  10. Chigira, Y., Fujii, Y. and Valera, J.D.R. 2004. Direct measurement of friction acting between a ballpoint pen and a paper. Proc. of SICE '04. IEEE, 1518--1521, vol. 2.Google ScholarGoogle Scholar
  11. Cho, Y., Kim, S., Joung, M. and Lee, J. Haptic Cushion: Automatic Generation of Vibro- tactile Feedback Based on Audio Signal for Immersive Interaction with Multimedia. Proc. of ACTUATOR '14. 427--430.Google ScholarGoogle Scholar
  12. Danna, J. and Velay, J.-L. 2015. Basic and supplementary sensory feedback in handwriting. Frontiers in Psychology. 6. Google ScholarGoogle ScholarCross RefCross Ref
  13. DiFilippo, D. and Pai, D.K. 2000. The AHI: An Audio and Haptic Interface for Contact Interactions. Proc. of UIST '00. ACM, 149--158. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Dooijes, E.H. 1983. Analysis of handwriting movements. Acta Psychologica. 54, 1, 99--1 Google ScholarGoogle ScholarCross RefCross Ref
  15. Fagiani, R., Massi, F., Chatelet, E., Berthier, Y. and Akay, A. 2011. Tactile perception by friction induced vibrations. Tribology International. 44, 10, 1100--1110. Google ScholarGoogle ScholarCross RefCross Ref
  16. Feder, K.P. and Majnemer, A. 2007. Handwriting development, competency, and intervention. Developmental Medicine & Child Neurology. 49, 4, 312--317. Google ScholarGoogle ScholarCross RefCross Ref
  17. Franke, K. and Rose, S. 2004. Ink-deposition model: the relation of writing and ink deposition processes. Proc. of IWFHR '04. IEEE, 173--178. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. French, A.S., Holden, A.V. and Stein, R.B. 1972. The estimation of the frequency response function of a mechanoreceptor. Kybernetik. 11, 1, 15--23. Google ScholarGoogle ScholarCross RefCross Ref
  19. Harrison, C., Xiao, R. and Hudson, S. 2012. Acoustic Barcodes: Passive, Durable and Inexpensive Notched Identification Tags. Proc. of UIST '12. ACM, 563--568. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Hayward, V., Astley, O.R., Cruz-Hernandez, M., Grant, D. and Robles-De-La-Torre, G. 2004. Haptic interfaces and devices. Sensor Review. 24, 1, 16--29. Google ScholarGoogle ScholarCross RefCross Ref
  21. Hinckley, K., Pahud, M., Benko, H., Irani, P., Guimbretière, F., Gavriliu, M., Chen, X., Matulic, F., Buxton, W. and Wilson, A. 2014. Sensing Techniques for Tablet+Stylus Interaction. Proc. of UIST '14. ACM, 605--614. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Hinckley, K., Yatani, K., Pahud, M., Coddington, N., Rodenhouse, J., Wilson, A., Benko, H. and Buxton, B. 2010. Pen + Touch = New Tools. Proc. of UIST '10. ACM, 27--36. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Hoggan, E., Raisamo, R. and Brewster, S.A. 2009. Mapping Information to Audio and Tactile Icons. Proc. of ICMI-MLMI '09. ACM, 327--334. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Hollerbach, J.M. 1981. An Oscillation Theory of Handwriting. Biol. Cybern. 39, 139--156. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Ikei, Y., Yamada, M. and Fukuda, S. 2001. A new design of haptic texture display - Texture Display2 - and its preliminary evaluation. Proc. of VR '01. IEEE, 21--28. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Kamuro, S., Minamizawa, K., Kawakami, N. and Tachi, S. 2009. Ungrounded kinesthetic pen for haptic interaction with virtual environments. Proc. of RO-MAN '09. IEEE, 436--441. Google ScholarGoogle ScholarCross RefCross Ref
  27. Kwon, D.-S., Yang, T.-H. and Cho, Y.-J. 2010. Mechatronics technology in mobile devices. Industrial Electronics Magazine, IEEE. 4, 2, 36--41. Google ScholarGoogle ScholarCross RefCross Ref
  28. Lee, J.C., Dietz, P.H., Leigh, D., Yerazunis, W.S. and Hudson, S.E. 2004. Haptic Pen: A Tactile Feedback Stylus for Touch Screens. Proc. of UIST '04. ACM, 291--294. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Liao, C., Guimbretière, F. and Loeckenhoff, C.E. 2006. Pen-top Feedback for Paper-based Interfaces. Proc. of UIST '06. ACM, 201--210. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. McMahan, W., Romano, J.M., Abdul Rahuman, A.M. and Kuchenbecker, K.J. 2010. High frequency acceleration feedback significantly increases the realism of haptically rendered textured surfaces. Proc. of Haptics Symposium '10. IEEE, 141--148. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. 3Murakami, K., Tsuruno, R. and Genda, E. 2005. Multiple illuminated paper textures for drawing strokes. Proc. of Computer Graphics International '05. IEEE, 156--161. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Pielot, M., Church, K. and de Oliveira, R. 2014. An In-situ Study of Mobile Phone Notifications. Proc. of MobileHCI '14. ACM, 233--242. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Pitts, M.J., Williams, M.A., Wellings, T. and Attridge, A. 2009. Assessing Subjective Response to Haptic Feedback in Automotive Touchscreens. Proc. of AutomotiveUI '09. ACM, 11--18. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Rocchesso, D., Delle Monache, S. and Papetti, S. 2016. Multisensory texture exploration at the tip of the pen. International Journal of Human-Computer Studies. 85, 47--56. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Romano, J.M. and Kuchenbecker, K.J. 2012. Creating Realistic Virtual Textures from Contact Acceleration Data. IEEE Transactions on Haptics. 5, 2, 109--119. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Rosen, S. and Howell, P. 2010. Signals and Systems for Speech and Hearing, second edition. Emerald Press.Google ScholarGoogle Scholar
  37. Schomaker, L.R.B. and Plamondon, R. 1990. The relation between pen force and pen-point kinematics in handwriting. Biological Cybernetics. 63, 4, 277--289. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Sharmin, S., Evreinov, G. and Raisamo, R. 2005. Non-visual feedback cues for pen computing. Proc. of EuroHaptics '05. IEEE, 625--628. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Tajadura-Jiménez, A., Tsakiris, M., Marquardt, T. and Bianchi-Berthouze, N. 2015. Action sounds update the mental representation of arm dimension: contributions of kinaesthesia and agency. Frontiers in Psychology. 6.Google ScholarGoogle Scholar
  40. Verrillo, R.T. 1965. Temporal Summation in Vibrotactile Sensitivity. The Journal of the Acoustical Society of America. 37, 5, 843--846. Google ScholarGoogle ScholarCross RefCross Ref
  41. Vitense, H.S., Jacko, J.A. and Emery, V.K. 2003. Multimodal feedback: an assessment of performance and mental workload. Ergonomics. 46, 1--3, 68--87. Google ScholarGoogle Scholar
  42. Winfield, L., Glassmire, J., Colgate, J.E. and Peshkin, M. 2007. T-PaD: Tactile Pattern Display through Variable Friction Reduction. Proc. of EuroHaptics '07. IEEE, 421--426. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Wintergerst, G., Jagodzinski, R., Hemmert, F., Müller, A. and Joost, G. 2010. Reflective Haptics: Enhancing Stylus-based Interactions on Touch Screens. Proc. of EuroHaptics'10. Springer-Verlag, 360--366. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Withana, A., Kondo, M., Makino, Y., Kakehi, G., Sugimoto, M. and Inami, M. 2010. ImpAct: Immersive Haptic Stylus to Enable Direct Touch and Manipulation for Surface Computing. Comput. Entertain. 8, 2, 9:1--9:16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Zwicker, E. 1961. Subdivision of the Audible Frequency Range into Critical Bands (Frequenzgruppen). The Journal of the Acoustical Society of America. 33, 2, 248--248. Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. RealPen: Providing Realism in Handwriting Tasks on Touch Surfaces using Auditory-Tactile Feedback

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      UIST '16: Proceedings of the 29th Annual Symposium on User Interface Software and Technology
      October 2016
      908 pages
      ISBN:9781450341899
      DOI:10.1145/2984511

      Copyright © 2016 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 16 October 2016

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      UIST '16 Paper Acceptance Rate79of384submissions,21%Overall Acceptance Rate842of3,967submissions,21%

      Upcoming Conference

      UIST '24

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader