skip to main content
10.1145/2984511.2984547acmconferencesArticle/Chapter ViewAbstractPublication PagesuistConference Proceedingsconference-collections
research-article

Zooids: Building Blocks for Swarm User Interfaces

Published:16 October 2016Publication History

ABSTRACT

This paper introduces swarm user interfaces, a new class of human-computer interfaces comprised of many autonomous robots that handle both display and interaction. We describe the design of Zooids, an open-source open-hardware platform for developing tabletop swarm interfaces. The platform consists of a collection of custom-designed wheeled micro robots each 2.6 cm in diameter, a radio base-station, a high-speed DLP structured light projector for optical tracking, and a software framework for application development and control. We illustrate the potential of tabletop swarm user interfaces through a set of application scenarios developed with Zooids, and discuss general design considerations unique to swarm user interfaces.

Skip Supplemental Material Section

Supplemental Material

uist2890-file3.mp4

mp4

47.4 MB

p97-le-goc.mp4

mp4

148.1 MB

References

  1. Ahlberg, C., Williamson, C., and Shneiderman, B. Dynamic queries for information exploration: An implementation and evaluation. In Proceedings of the SIGCHI conference on Human factors in computing systems, ACM (1992), 619--626. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Alonso-Mora, J., Breitenmoser, A., Rufli, M., Siegwart, R., and Beardsley, P. Multi-robot system for artistic pattern formation. In Robotics and Automation (ICRA), 2011 IEEE International Conference on, IEEE (2011), 4512--4517. Google ScholarGoogle ScholarCross RefCross Ref
  3. Alonso-Mora, J., Lohaus, S. H., Leemann, P., Siegwart, R., and Beardsley, P. Gesture based human-multi-robot swarm interaction and its application to an interactive display. In 2015 IEEE International Conference on Robotics and Automation (ICRA), IEEE (2015), 5948--5953. Google ScholarGoogle ScholarCross RefCross Ref
  4. Amano, K., and Yamamoto, A. Tangible interactions on a flat panel display using actuated paper sheets. In Proceedings of the 2012 ACM international conference on Interactive tabletops and surfaces, ACM (2012), 351--354. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Bennett, E., and Stevens, B. The effect that touching a projection augmented model has on object-presence. In Information Visualisation, 2005. Proceedings. Ninth International Conference on, IEEE (2005), 790--795. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Brave, S., Ishii, H., and Dahley, A. Tangible interfaces for remote collaboration and communication. In Proceedings of the 1998 ACM conference on Computer supported cooperative work, ACM (1998), 169--178. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Chang, B.-W., and Ungar, D. Animation: from cartoons to the user interface.Google ScholarGoogle Scholar
  8. Cucu, L., Rubenstein, M., and Nagpal, R. Towards self-assembled structures with mobile climbing robots. In Robotics and Automation (ICRA), 2015 IEEE International Conference on, IEEE (2015), 1955--1961. Google ScholarGoogle ScholarCross RefCross Ref
  9. Ducatelle, F., Di Caro, G., Pinciroli, C., and Gambardella, L. Self-organized cooperation between robotic swarms. Swarm Intelligence Journal 5, 2 (2011), 73--96. Google ScholarGoogle ScholarCross RefCross Ref
  10. Dudek, G., Jenkin, M., Milios, E., and Wilkes, D. A taxonomy for swarm robots. In Intelligent Robots and Systems'93, IROS'93. Proceedings of the 1993 IEEE/RSJ International Conference on, vol. 1, IEEE (1993), 441--447. Google ScholarGoogle ScholarCross RefCross Ref
  11. Felton, S. M., Tolley, M. T., Onal, C. D., Rus, D., and Wood, R. J. Robot self-assembly by folding: A printed inchworm robot. In Robotics and Automation (ICRA), 2013 IEEE International Conference on, IEEE (2013), 277--282. Google ScholarGoogle ScholarCross RefCross Ref
  12. Fishkin, K. P. A taxonomy for and analysis of tangible interfaces. Personal Ubiquitous Comput. 8 (September 2004), 347--358. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Fitzmaurice, G. W., and Buxton, W. An empirical evaluation of graspable user interfaces: towards specialized, space-multiplexed input. In Proc. CHI 1997, 43--50. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Follmer, S., Leithinger, D., Olwal, A., Cheng, N., and Ishii, H. Jamming User Interfaces: Programmable Particle Stiffness and Sensing for Malleable and Shape-Changing Devices. In ACM Symposium on User Interface Software and Technology (2012), 519--528. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Follmer, S., Leithinger, D., Olwal, A., Hogge, A., and Ishii, H. inform: Dynamic physical affordances and constraints through shape and object actuation. In Proceedings of the 26th Annual ACM Symposium on User Interface Software and Technology, UIST '13, ACM (New York, NY, USA, 2013), 417--426. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Futurelab, A. E. Drone 100 -- the world record for intel 2015. http://tinyurl.com/drone100, 2016.Google ScholarGoogle Scholar
  17. Gervais, R. Interaction and introspection with tangible augmented objects. Phd dissertation, Université de Bordeaux, Dec. 2015.Google ScholarGoogle Scholar
  18. Goldstein, S. C., Campbell, J. D., and Mowry, T. C. Programmable matter. Computer 38, 6 (2005), 99--101. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Greenberg, S., and Fitchett, C. Phidgets: easy development of physical interfaces through physical widgets. In Proceedings of the 14th annual ACM symposium on User interface software and technology, ACM (2001), 209--218. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Grieder, R., Alonso-Mora, J., Bloechlinger, C., Siegwart, R., and Beardsley, P. Multi-robot control and interaction with a hand-held tablet. In Workshop Proc. Int. Conf. Robotics and Automation, vol. 131, Citeseer (2014).Google ScholarGoogle Scholar
  21. Hauri, S., Alonso-Mora, J., Breitenmoser, A., Siegwart, R., and Beardsley, P. Multi-robot formation control via a real-time drawing interface. In Field and Service Robotics, Springer (2014), 175--189. Google ScholarGoogle ScholarCross RefCross Ref
  22. Heer, J., and Robertson, G. G. Animated transitions in statistical data graphics. Visualization and Computer Graphics, IEEE Transactions on 13, 6 (2007), 1240--1247. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Horn, M. S., Solovey, E. T., Crouser, R. J., and Jacob, R. J. Comparing the use of tangible and graphical programming languages for informal science education. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI '09, 975--984. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Hornecker, E., and Buur, J. Getting a grip on tangible interaction: a framework on physical space and social interaction. In Proceedings of the SIGCHI conference on Human Factors in computing systems, ACM (2006), 437--446. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Huron, S., Jansen, Y., and Carpendale, S. Constructing visual representations: Investigating the use of tangible tokens. Visualization and Computer Graphics, IEEE Transactions on 20, 12 (2014), 2102--2111.Google ScholarGoogle Scholar
  26. Ishii, H., Lakatos, D., Bonanni, L., and Labrune, J.-B. Radical atoms: beyond tangible bits, toward transformable materials. interactions 19, 1 (Jan. 2012), 38--51. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Jansen, Y., Dragicevic, P., and Fekete, J.-D. Evaluating the efficiency of physical visualizations. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, ACM (2013), 2593--2602. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Jansen, Y., Dragicevic, P., Isenberg, P., Alexander, J., Karnik, A., Kildal, J., Subramanian, S., and Hornbæk, K. Opportunities and challenges for data physicalization. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, ACM (2015), 3227--3236. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Kira, Z., and Potter, M. A. Exerting human control over decentralized robot swarms. In Autonomous Robots and Agents, 2009. ICARA 2009. 4th International Conference on, IEEE (2009), 566--571.Google ScholarGoogle ScholarCross RefCross Ref
  30. Kojima, M., Sugimoto, M., Nakaruma, A., Tomita, M., Inami, M., and Nii, H. Augmented coliseum: An augmented game environment with small vehicles. Horizontal Interactive Human-Computer Systems, International Workshop on 0 (2006), 3--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Kolling, A., Nunnally, S., and Lewis, M. Towards human control of robot swarms. In Proceedings of the seventh annual ACM/IEEE international conference on human-robot interaction, ACM (2012), 89--96. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Kuhn, H. W. The hungarian method for the assignment problem. Naval research logistics quarterly 2, 1--2 (1955), 83--97.Google ScholarGoogle Scholar
  33. Kushleyev, A., Mellinger, D., Powers, C., and Kumar, V. Towards a swarm of agile micro quadrotors. Autonomous Robots 35, 4 (2013), 287--300. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Le Goc, M., Dragicevic, P., Huron, S., Boy, J., and Fekete, J.-D. Smarttokens: Embedding motion and grip sensing in small tangible objects. In Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology, ACM (2015), 357--362. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Le Goc, M., Dragicevic, P., Huron, S., Boy, J., and Fekete, J.-D. A better grasp on pictures under glass: Comparing touch and tangible object manipulation using physical proxies. In Proceedings of the International Working Conference on Advanced Visual Interfaces, ACM (2016), 76--83. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Lederman, S. J., and Campbell, J. I. Tangible graphs for the blind. Human Factors: The Journal of the Human Factors and Ergonomics Society 24, 1 (1982), 85--100.Google ScholarGoogle ScholarCross RefCross Ref
  37. Lee, J. C., Hudson, S. E., Summet, J. W., and Dietz, P. H. Moveable interactive projected displays using projector based tracking. In Proceedings of the 18th annual ACM symposium on User interface software and technology, ACM (2005), 63--72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Lee, N., Kim, J., Lee, J., Shin, M., and Lee, W. Molebot: mole in a table. In ACM SIGGRAPH 2011 Emerging Technologies, ACM (2011), 9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Leithinger, D., and Ishii, H. Relief: a scalable actuated shape display. In Proceedings of the fourth international conference on Tangible, embedded, and embodied interaction, ACM (2010), 221--222. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Lifton, J., Broxton, M., and Paradiso, J. A. Experiences and directions in pushpin computing. In IPSN 2005. Fourth International Symposium on Information Processing in Sensor Networks, 2005., IEEE (2005), 416--421. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Marquardt, N., Nacenta, M. A., Young, J. E., Carpendale, S., Greenberg, S., and Sharlin, E. The haptic tabletop puck: tactile feedback for interactive tabletops. In Proceedings of the ACM International Conference on Interactive Tabletops and Surfaces, ACM (2009), 85--92. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Marshall, M., Carter, T., Alexander, J., and Subramanian, S. Ultra-tangibles: creating movable tangible objects on interactive tables. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, ACM (2012), 2185--2188. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Mi, H., and Sugimoto, M. Hats: interact using height-adjustable tangibles in tabletop interfaces. In Proceedings of the ACM International Conference on Interactive Tabletops and Surfaces, ACM (2011), 71--74. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Microsoft. Sanddance: Visually explore, understand, and present data. Online. http://research.microsoft.com/en-us/projects/sanddance/, 2016.Google ScholarGoogle Scholar
  45. Moere, A. V. Beyond the tyranny of the pixel: Exploring the physicality of information visualization. In Information Visualisation, 2008. IV'08. 12th International Conference, IEEE (2008), 469--474. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Nielsen, J. Usability engineering.Google ScholarGoogle Scholar
  47. Nowacka, D., Ladha, K., Hammerla, N. Y., Jackson, D., Ladha, C., Rukzio, E., and Olivier, P. Touchbugs: Actuated tangibles on multi-touch tables. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, ACM (2013), 759--762. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Pangaro, G., Maynes-Aminzade, D., and Ishii, H. The actuated workbench: Computer-controlled actuation in tabletop tangible interfaces. In Proceedings of the 15th Annual ACM Symposium on User Interface Software and Technology, UIST '02, 181--190. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Patten, J. Thumbles - robotic tabletop user interface platform. TED.com (2014).Google ScholarGoogle Scholar
  50. Patten, J., and Ishii, H. Mechanical constraints as computational constraints in tabletop tangible interfaces. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI '07, ACM (New York, NY, USA, 2007), 809--818. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Patten, J., Ishii, H., Hines, J., and Pangaro, G. Sensetable: A wireless object tracking platform for tangible user interfaces. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI '01, ACM (New York, NY, USA, 2001), 253--260. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Patten, J., Recht, B., and Ishii, H. Audiopad: A tag-based interface for musical performance. In Proceedings of the 2002 Conference on New Interfaces for Musical Expression, NIME '02, National University of Singapore (Singapore, Singapore, 2002), 1--6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Pedersen, E. W., and Hornbæk, K. Tangible bots: interaction with active tangibles in tabletop interfaces. In Proc. CHI, ACM (2011), 2975--2984. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Poupyrev, I., Nashida, T., Maruyama, S., Rekimoto, J., and Yamaji, Y. Lumen: Interactive visual and shape display for calm computing. In ACM SIGGRAPH 2004 Emerging Technologies, SIGGRAPH '04, ACM (New York, NY, USA, 2004), 17--. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Poupyrev, I., Nashida, T., and Okabe, M. Actuation and tangible user interfaces: the vaucanson duck, robots, and shape displays. In TEI '07, 205--212. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Rasmussen, M. K., Pedersen, E. W., Petersen, M. G., and Hornbaek, K. Shape-changing interfaces: a review of the design space and open research questions. In CHI '12, 735--744. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Reznik, D., and Canny, J. A flat rigid plate is a universal planar manipulator. In IEEE ICRA 1998, vol. 2, IEEE (1998), 1471--1477. Google ScholarGoogle ScholarCross RefCross Ref
  58. Richter, J., Thomas, B. H., Sugimoto, M., and Inami, M. Remote active tangible interactions. In Proceedings of the 1st international conference on Tangible and embedded interaction, ACM (2007), 39--42. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Romanishin, J. W., Gilpin, K., and Rus, D. M-blocks: Momentum-driven, magnetic modular robots. In Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International Conference on, IEEE (2013), 4288--4295.Google ScholarGoogle ScholarCross RefCross Ref
  60. Rosenfeld, D., Zawadzki, M., Sudol, J., and Perlin, K. Physical objects as bidirectional user interface elements. Computer Graphics and Applications, IEEE 24, 1 (2004), 44--49. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Roudaut, A., Karnik, A., Löchtefeld, M., and Subramanian, S. Morphees: toward high shape resolution in self-actuated flexible mobile devices. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, ACM (2013), 593--602. Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. Rubens, C., Braley, S., Gomes, A., Goc, D., Zhang, X., Carrascal, J. P., and Vertegaal, R. Bitdrones: Towards levitating programmable matter using interactive 3d quadcopter displays. In Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology, ACM (2015), 57--58. Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. Rubenstein, M., Ahler, C., and Nagpal, R. Kilobot: A low cost scalable robot system for collective behaviors. In Robotics and Automation (ICRA), 2012 IEEE International Conference on, IEEE (2012), 3293--3298. Google ScholarGoogle ScholarCross RefCross Ref
  64. Rus, D. Programmable matter with self-reconfiguring robots. In Proceedings of the 7th ACM international conference on Computing frontiers, CF '10, 51--52. Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. Sahai, R., Avadhanula, S., Groff, R., Steltz, E., Wood, R., and Fearing, R. S. Towards a 3g crawling robot through the integration of microrobot technologies. In Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International Conference on, IEEE (2006), 296--302.Google ScholarGoogle ScholarCross RefCross Ref
  66. Seah, S. A., Drinkwater, B. W., Carter, T., Malkin, R., and Subramanian, S. Dexterous ultrasonic levitation of millimeter-sized objects in air. IEEE transactions on ultrasonics, ferroelectrics, and frequency control 61, 7 (2014), 1233--1236. Google ScholarGoogle ScholarCross RefCross Ref
  67. Snape, J., van den Berg, J., Guy, S. J., and Manocha, D. The hybrid reciprocal velocity obstacle. Robotics, IEEE Transactions on 27, 4 (2011), 696--706. Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. Snape, J., van den Berg, J. P., Guy, S. J., and Manocha, D. Independent navigation of multiple mobile robots with hybrid reciprocal velocity obstacles. In IROS (2009), 5917--5922. Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. Steltz, E., Seeman, M., Avadhanula, S., and Fearing, R. S. Power electronics design choice for piezoelectric microrobots. In Intelligent Robots and Systems, 2006 IEEE/RSJ International Conference on, IEEE (2006), 1322--1328. Google ScholarGoogle ScholarCross RefCross Ref
  70. Sutherland, I. E. The ultimate display, 1965.Google ScholarGoogle Scholar
  71. Taher, F., Hardy, J., Karnik, A., Weichel, C., Jansen, Y., Hornbæk, K., and Alexander, J. Exploring interactions with physically dynamic bar charts. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, ACM (2015), 3237--3246. Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. Ullmer, B., and Ishii, H. The metadesk: Models and prototypes for tangible user interfaces. In Proceedings of the 10th Annual ACM Symposium on User Interface Software and Technology, UIST '97, ACM (New York, NY, USA, 1997), 223--232. Google ScholarGoogle ScholarDigital LibraryDigital Library
  73. Ullmer, B., Ishii, H., and Jacob, R. J. K. Token+constraint systems for tangible interaction with digital information. ACM Trans. Comput.-Hum. Interact. 12, 1 (Mar. 2005), 81--118. Google ScholarGoogle ScholarDigital LibraryDigital Library
  74. Underkoffier, J., and Ishii, H. Urp: A luminous-tangible workbench for urban planning and design. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI '99, 386--393. Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. Victor, B. A brief rant on the future of interaction design. http://tinyurl.com/bvrant, 2011.Google ScholarGoogle Scholar
  76. Wakita, A., Nakano, A., and Kobayashi, N. Programmable blobs: a rheologic interface for organic shape design. In Proceedings of the fifth international conference on Tangible, embedded, and embodied interaction, ACM (2011), 273--276. Google ScholarGoogle ScholarDigital LibraryDigital Library
  77. Weiser, M. Some computer science issues in ubiquitous computing. Communications of the ACM 36, 7 (1993), 75--84. Google ScholarGoogle ScholarDigital LibraryDigital Library
  78. Weiss, M., Schwarz, F., Jakubowski, S., and Borchers, J. Madgets: Actuating widgets on interactive tabletops. In Proceedings of the 23Nd Annual ACM Symposium on User Interface Software and Technology, UIST '10, 293--302. Google ScholarGoogle ScholarDigital LibraryDigital Library
  79. Werfel, J., Petersen, K., and Nagpal, R. Designing collective behavior in a termite-inspired robot construction team. Science 343, 6172 (2014), 754--758. Google ScholarGoogle ScholarCross RefCross Ref
  80. Yamamoto, A., Tsuruta, S., and Higuchi, T. Planar 3-dof paper sheet manipulation using electrostatic induction. In Industrial Electronics (ISIE), 2010 IEEE International Symposium on, IEEE (2010), 493--498.Google ScholarGoogle ScholarCross RefCross Ref
  81. Yamanaka, S., and Miyashita, H. Vibkinesis: notification by direct tap and-dying message-using vibronic movement controllable smartphones. In Proceedings of the 27th annual ACM symposium on User interface software and technology, ACM (2014), 535--540. Google ScholarGoogle ScholarDigital LibraryDigital Library
  82. Yao, L., Niiyama, R., Ou, J., Follmer, S., Della Silva, C., and Ishii, H. Pneui: Pneumatically actuated soft composite materials for shape changing interfaces. In Proceedings of the 26th Annual ACM Symposium on User Interface Software and Technology, UIST '13, 13--22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  83. Yi, J. S., Melton, R., Stasko, J., and Jacko, J. A. Dust & magnet: multivariate information visualization using a magnet metaphor. Information Visualization 4, 4 (2005), 239--256. Google ScholarGoogle ScholarDigital LibraryDigital Library
  84. Zhao, J., and Moere, A. V. Embodiment in data sculpture: a model of the physical visualization of information. In Proceedings of the 3rd international conference on Digital Interactive Media in Entertainment and Arts, ACM (2008), 343--350. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Zooids: Building Blocks for Swarm User Interfaces

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      UIST '16: Proceedings of the 29th Annual Symposium on User Interface Software and Technology
      October 2016
      908 pages
      ISBN:9781450341899
      DOI:10.1145/2984511

      Copyright © 2016 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 16 October 2016

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      UIST '16 Paper Acceptance Rate79of384submissions,21%Overall Acceptance Rate842of3,967submissions,21%

      Upcoming Conference

      UIST '24

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader