skip to main content
research-article
Public Access

Crumpling sound synthesis

Published:05 December 2016Publication History
Skip Abstract Section

Abstract

Crumpling a thin sheet produces a characteristic sound, comprised of distinct clicking sounds corresponding to buckling events. We propose a physically based algorithm that automatically synthesizes crumpling sounds for a given thin shell animation. The resulting sound is a superposition of individually synthesized clicking sounds corresponding to visually significant and insignificant buckling events. We identify visually significant buckling events on the dynamically evolving thin surface mesh, and instantiate visually insignificant buckling events via a stochastic model that seeks to mimic the power-law distribution of buckling energies observed in many materials.

In either case, the synthesis of a buckling sound employs linear modal analysis of the deformed thin shell. Because different buckling events in general occur at different deformed configurations, the question arises whether the calculation of linear modes can be reused. We amortize the cost of the linear modal analysis by dynamically partitioning the mesh into nearly rigid pieces: the modal analysis of a rigidly moving piece is retained over time, and the modal analysis of the assembly is obtained via Component Mode Synthesis (CMS). We illustrate our approach through a series of examples and a perceptual user study, demonstrating the utility of the sound synthesis method in producing realistic sounds at practical computation times.

Skip Supplemental Material Section

Supplemental Material

References

  1. Abobaker, M., Bouaziz, O., Lebyodkin, M., Lebedkina, T., and Shashkov, I. V. 2015. Avalanche dynamics in crumpled aluminum thin foils. Scripta Materialia 99 (Apr.), 17--20.Google ScholarGoogle ScholarCross RefCross Ref
  2. An, S. S., Marschner, S., and James, D. L. 2012. Motion-driven Concatenative Synthesis of Cloth Sounds. ACM Trans. Graph. 31, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Balankin, A. S., Cruz, M. A. M., Caracheo, L. A. A., Huerta, O. S., Rivas, C. D., Martínez, C. L., Ochoa, D. S., Ruiz, L. M., Gutiérrez, S. M., Ortiz, J. P., and Ortiz, M. P. 2015. Mechanical properties and relaxation behavior of crumpled aluminum foils. Journal of Materials Science 50, 13.Google ScholarGoogle ScholarCross RefCross Ref
  4. Baraff, D., and Witkin, A. 1998. Large steps in cloth simulation. In Proc. SIGGRAPH '98. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Bathe, K.-J., and Dong, J. 2014. Component mode synthesis with subspace iterations for controlled accuracy of frequency and mode shape solutions. Computers & Structures 139 (July).Google ScholarGoogle Scholar
  6. Bridson, R., Marino, S., and Fedkiw, R. 2003. Simulation of clothing with folds and wrinkles. In Proc. SCA '03. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Cerda, E., Chaieb, S., Melo, F., and Mahadevan, L. 1999. Conical dislocations in crumpling. Nature 401, 6748 (Sept.), 46--49.Google ScholarGoogle ScholarCross RefCross Ref
  8. Chadwick, J. N., An, S. S., and James, D. L. 2009. Harmonic shells: a practical nonlinear sound model for near-rigid thin shells. ACM Trans. Graph. 28, 5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Choi, K.-J., and Ko, H.-S. 2002. Stable but Responsive Cloth. In Proc. SIGGRAPH '02. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Cook, P. R. 2002. Real Sound Synthesis for Interactive Applications, 1st edition ed. A K Peters/CRC Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Craig, R. R., and Bampton, M. C. C. 1968. Coupling of substructures for dynamic analyses. AIAA Journal 6, 7, 1313--1319.Google ScholarGoogle ScholarCross RefCross Ref
  12. Craig, R. R., and Kurdila, A. J. 2006. Fundamentals of Structural Dynamics, 2 edition ed. Wiley, Hoboken, N.J, July.Google ScholarGoogle Scholar
  13. Craig, J. R. 2000. Coupling of substructures for dynamic analyses: An overview. In 41st Structures, Structural Dynamics, and Materials Conference and Exhibit.Google ScholarGoogle Scholar
  14. De Klerk, D., Rixen, D. J., and Voormeeren, S. N. 2008. General framework for dynamic substructuring. AIAA Journal 46, 5, 1169--1181.Google ScholarGoogle ScholarCross RefCross Ref
  15. DiDonna, B. A. 2002. Scaling of the buckling transition of ridges in thin sheets. Physical Review E 66, 1 (July), 016601.Google ScholarGoogle ScholarCross RefCross Ref
  16. Doel, K. v. d., Kry, P. G., and Pai, D. K. 2001. FoleyAutomatic: physically-based sound effects for interactive simulation and animation. In Proc. SIGGRAPH '01. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Feller, W. 2008. An introduction to probability theory and its applications, vol. 2. John Wiley & Sons.Google ScholarGoogle Scholar
  18. Fontana, F., and Bresin, R. 2003. Physics-based sound synthesis and control: Crushing, walking and running by crumpling sounds. In Proc. of the XIV Colloquium on Musical Informatics.Google ScholarGoogle Scholar
  19. Gingold, Y., Secord, A., Han, J. Y., Grinspun, E., and Zorin, D. 2004. A Discrete Model for Inelastic Deformation of Thin Shells. Technical Report.Google ScholarGoogle Scholar
  20. Golub, G. H., and Van Loan, C. F. 2012. Matrix computations, vol. 3. JHU Press.Google ScholarGoogle Scholar
  21. Grinspun, E., Hirani, A. N., Desbrun, M., and Schröder, P. 2003. Discrete shells. In Proc. SCA '03. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Holm-Jorgensen, K., and Nielsen, S. R. K. 2009. A component mode synthesis algorithm for multibody dynamics of wind turbines. Journal of Sound and Vibration 326, 753--767.Google ScholarGoogle ScholarCross RefCross Ref
  23. Houle, P. A., and Sethna, J. P. 1996. Acoustic Emission from crumpling paper. Physical Review E 54, 1 (July), 278--283.Google ScholarGoogle ScholarCross RefCross Ref
  24. Hurty, W. C. 1965. Dynamic Analysis of Structural Systems Using Component Modes. AIAA Journal 3, 4, 678--685.Google ScholarGoogle ScholarCross RefCross Ref
  25. James, D. L., and Twigg, C. D. 2005. Skinning mesh animations. ACM Trans. Graph. 24, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. James, D. L., Barbic, J., and Pai, D. K. 2006. Precomputed acoustic transfer: output-sensitive, accurate sound generation for geometrically complex vibration sources. ACM Trans. Graph. 25, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Kim, T., Thürey, N., James, D. L., and Gross, M. H. 2008. Wavelet turbulence for fluid simulation. ACM Trans. Graph. 27, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Kramer, E. M., and Lobkovsky, A. E. 1996. Universal Power Law in the Noise from a Crumpled Elastic Sheet. Physical Review E 53, 2 (Feb.), 1465--1469.Google ScholarGoogle ScholarCross RefCross Ref
  29. MacNeal, R. H. 1971. A hybrid method of component mode synthesis. Computers & Structures 1, 4 (Dec.), 581--601.Google ScholarGoogle ScholarCross RefCross Ref
  30. Moakher, M. 2002. Means and Averaging in the Group of Rotations. SIAM Journal on Matrix Analysis and Applications 24. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Narain, R., Samii, A., and O'Brien, J. F. 2012. Adaptive anisotropic remeshing for cloth simulation. ACM Trans. Graph. 31, 6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Narain, R., Pfaff, T., and O'Brien, J. F. 2013. Folding and Crumpling Adaptive Sheets. ACM Trans. Graph. 32, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. O'Brien, J. F., Shen, C., and Gatchalian, C. M. Synthesizing sounds from rigid-body simulations. In Proc. SCA '02. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. O'Brien, J. F., Cook, P. R., and Essl, G. 2001. Synthesizing sounds from physically based motion. In Proc. SIGGRAPH '01. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Pandey, A., Moulton, D. E., Vella, D., and Holmes, D. P. 2014. Dynamics of snapping beams and jumping poppers. EPL (Europhysics Letters) 105, 2, 24001.Google ScholarGoogle ScholarCross RefCross Ref
  36. Parlett, B. N. 1980. The symmetric eigenvalue problem, vol. 7. SIAM.Google ScholarGoogle Scholar
  37. Petri, A., Paparo, G., Vespignani, A., Alippi, A., and Costantini, M. 1994. Experimental evidence for critical dynamics in microfracturing processes. Physical Review Letters 73, 25.Google ScholarGoogle ScholarCross RefCross Ref
  38. Ramm, E., and Wall, W. 2003. Shell Structures - a Sensitive Interrelation Between Physics and Numerics. Bericht. SFB 404.Google ScholarGoogle Scholar
  39. Rubin, S. 1975. Improved Component-Mode Representation for Structural Dynamic Analysis. AIAA Journal 13, 8, 995--1006.Google ScholarGoogle ScholarCross RefCross Ref
  40. Rubinstein, R. Y., and Kroese, D. P. 2011. Simulation and the Monte Carlo method, vol. 707. John Wiley & Sons. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Schreck, C., Rohmer, D., James, D., Hahmann, S., and Cani, M.-P. 2016. Real-time sound synthesis for paper material based on geometric analysis. In Proc. SCA '16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Sethna, J. P., Dahmen, K. A., and Myers, C. R. 2001. Crackling noise. Nature 410, 6825 (Mar.), 242--250.Google ScholarGoogle ScholarCross RefCross Ref
  43. Shabana, A. A. 2012. Theory of vibration: Volume II: discrete and continuous systems. Springer Science & Business Media.Google ScholarGoogle Scholar
  44. Shen, L., and Liu, Y. J. 2006. An adaptive fast multipole boundary element method for three-dimensional acoustic wave problems based on the Burton-Miller formulation. Computational Mechanics 40, 3 (Oct.), 461--472.Google ScholarGoogle Scholar
  45. Stammberger, M., and Voss, H. 2008. Automated Multi-Level Substructuring for a Fluid-Solid Vibration Problem. In Numerical Mathematics and Advanced Applications. 563--570.Google ScholarGoogle Scholar
  46. Sun, B. H., Yeh, K. Y., and Rimrott, F. P. J. 1995. On the buckling of structures. Technische Mechanik 15, 2, 129--140.Google ScholarGoogle Scholar
  47. Terzopoulos, D., Platt, J., Barr, A., and Fleischer, K. 1987. Elastically deformable models. In Proc. SIGGRAPH '87. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Vliegenthart, G. A., and Gompper, G. 2006. Forced crumpling of self-avoiding elastic sheets. Nature Materials 5, 3, 216--221.Google ScholarGoogle ScholarCross RefCross Ref
  49. Winnemöller, H., Olsen, S. C., and Gooch, B. 2006. Real-time video abstraction. ACM Trans. Graph. 25, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Wood, A. 2002. Witten's lectures on crumpling. Physica A: Statistical Mechanics and its Applications 313, 1.Google ScholarGoogle Scholar
  51. Yang, Y., Xu, W., Guo, X., Zhou, K., and Guo, B. 2013. Boundary-Aware Multidomain Subspace Deformation. IEEE TVCG 19, 10.Google ScholarGoogle Scholar
  52. Zheng, C., and James, D. L. 2010. Rigid-body fracture sound with precomputed soundbanks. ACM Trans. Graph. 29, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Zheng, C., and James, D. L. 2011. Toward high-quality modal contact sound. ACM Trans. Graph. 30, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Zhou, C., Jin, X., and Wang, C. C. L. 2008. Shear buckling and dynamic bending in cloth simulation. Computer Animation and Virtual Worlds 19, 3-4 (Jan.), 493--503. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Crumpling sound synthesis

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 35, Issue 6
        November 2016
        1045 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2980179
        Issue’s Table of Contents

        Copyright © 2016 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 5 December 2016
        Published in tog Volume 35, Issue 6

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader