skip to main content
10.1145/2973750.2973759acmotherconferencesArticle/Chapter ViewAbstractPublication PagesmobicomConference Proceedingsconference-collections
research-article
Public Access

Making sense of mechanical vibration period with sub-millisecond accuracy using backscatter signals

Published:03 October 2016Publication History

ABSTRACT

Traditional vibration inspection systems, equipped with separated sensing and communication modules, are either very expensive (e.g., hundreds of dollars) and/or suffer from occlusion and narrow field of view (e.g., laser). In this work, we present an RFID-based solution, Tagbeat, to inspect mechanical vibration using COTS RFID tags and readers. Making sense of micro and high-frequency vibration using random and low-frequency readings of tag has been a daunting task, especially challenging for achieving sub-millisecond period accuracy. Our system achieves these three goals by discerning the change pattern of backscatter signal replied from the tag, which is attached on the vibrating surface and displaced by the vibration within a small range. This work introduces three main innovations. First, it shows how one can utilize COTS RFID to sense mechanical vibration and accurately discover its period with a few periods of short and noisy samples. Second, a new digital microscope is designed to amplify the micro-vibration-induced weak signals. Third, Tagbeat introduces compressive reading to inspect high-frequency vibration with relatively low RFID read rate. We implement Tagbeat using a COTS RFID device and evaluate it with a commercial centrifugal machine. Empirical benchmarks with a prototype show that Tagbeat can inspect the vibration period with a mean accuracy of 0.36ms and a relative error rate of 0.03%. We also study three cases to demonstrate how to associate our inspection solution with the specific domain requirements.

References

  1. Alien, http://www.alientechnology.com.Google ScholarGoogle Scholar
  2. EPC Gen2, EPCglobal. www.gsl.org/epcglobal.Google ScholarGoogle Scholar
  3. ImpinJ ATID AB700 Handheld Reader, http://www.impinj.com/products/readers/atid-ab700-handheld/.Google ScholarGoogle Scholar
  4. Impinj, Inc. http://www.impinj.com/.Google ScholarGoogle Scholar
  5. ImpinJ TSL 1128 Handheld Reader. http://www.impinj.com/products/readers/tsl-1128-handheld/.Google ScholarGoogle Scholar
  6. Lion Precision. http://www.lionprecision.com/.Google ScholarGoogle Scholar
  7. LTK SDK. https://support.impinj.com.Google ScholarGoogle Scholar
  8. Measurement Specialties. http://www.meas-spec.com/vibration-sensors.aspx.Google ScholarGoogle Scholar
  9. Tagbeat. https://github.com/tagsys/tagbeat.Google ScholarGoogle Scholar
  10. TagSee. https://github.com/tagsys/tagsee.Google ScholarGoogle Scholar
  11. WISP, https://wisp.wikispaces.com/.Google ScholarGoogle Scholar
  12. Yeon Antenna, http://www.yeon.com.tw/content/product.php?act=detail&c_id=43.Google ScholarGoogle Scholar
  13. BLINK: A High Throughput Link Layer for Backscatter Communication, pages 1--14, 2012.Google ScholarGoogle Scholar
  14. O. Abari, D. Vasisht, D. Katabi, and A. Chandrakasan. Caraoke: An e-toll transponder network for smart cities. In Proc. of ACM SIGCOMM, pages 297--310, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. J. C. Brown. Musical fundamental frequency tracking using a pattern recognition method. The Journal of the Acoustical Society of America, 92(3):1394--1402, 1992.Google ScholarGoogle ScholarCross RefCross Ref
  16. M. Buettner, B. Greenstein, and D. Wetherall. Dewdrop: an energy-aware runtime for computational RFID. In Proc. of USENIX NSDI, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. M. Buettner and D. Wetherall. An empirical study of UHF RFID performance. In Proc. of ACM MobiCom, page 223, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. E. J. Candès, J. Romberg, and T. Tao. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. Information Theory, IEEE Transactions on, 52(2):489--509, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. P. Castellini, M. Martarelli, and E. P. Tomasini. Laser doppler vibrometry: Development of advanced solutions answering to technology's needs. Mechanical Systems and Signal Processing, 20(6):1265--1285, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  20. D. M. Dobkin. The RF in RFID: UHF RFID in Practice. Newnes, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. D. L. Donoho. Compressed sensing. IEEE Transactions on Information Theory, 52(4):1289--1306, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. EPCglobal. Low level reader protocol (llrp). 2010.Google ScholarGoogle Scholar
  23. J. Jia, Y.-W. Tai, T.-P. Wu, and C.-K. Tang. Video repairing under variable illumination using cyclic motions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(5):832--839, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. I. Laptev, S. J. Belongie, P. Perez, and J. Wills. Periodic motion detection and segmentation via approximate sequence alignment. In Proc. of IEEE ICCV, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Y. Lei, Z. He, and Y. Zi. Application of an intelligent classification method to mechanical fault diagnosis. Expert Systems with Applications, 36(6):9941--9948, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. V. Liu, A. Parks, V. Talla, S. Gollakota, D. Wetherall, and J. R. Smith. Ambient backscatter: wireless communication out of thin air. In Proc. of ACM SIGCOMM, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. E. Lovelace, J. Sutton, and E. Salpeter. Digital search methods for pulsars. Nature, 222:231--233, 1969.Google ScholarGoogle ScholarCross RefCross Ref
  28. R. C. Maher and J. W. Beauchamp. Fundamental frequency estimation of musical signals using a two-way mismatch procedure. The Journal of the Acoustical Society of America, 95(4):2254--2263, 1994.Google ScholarGoogle ScholarCross RefCross Ref
  29. K. Otsuka, K. Abe, J.-Y. Ko, and T.-S. Lim. Real-time nanometer-vibration measurement with a self-mixing microchip solid-state laser. Optics letters, 27(15):1339--1341, 2002.Google ScholarGoogle ScholarCross RefCross Ref
  30. A. N. Parks, A. Liu, S. Gollakota, and J. R. Smith. Turbocharging ambient backscatter communication. In Proc. of ACM SIGCOMM, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. N. Roy and R. R. Choudhury. Ripple ii: Faster communication through physical vibration. In Proc. of USENIX NSDI, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. N. Roy, M. Gowda, and R. R. Choudhury. Ripple: Communicating through physical vibration. In Proc. of USENIX NSDI, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. S. M. Seitz and C. R. Dyer. View-invariant analysis of cyclic motion. International Journal of Computer Vision, 25(3):231--251, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. D. H. Staelin. Fast folding algorithm for detection of periodic pulse trains. In IEEE Proceedings, volume 57, pages 724--725, 1969.Google ScholarGoogle ScholarCross RefCross Ref
  35. I. R. Titze and D. W. Martin. Principles of voice production. The Journal of the Acoustical Society of America, 104(3):1148--1148, 1998.Google ScholarGoogle ScholarCross RefCross Ref
  36. A. Veeraraghavan, D. Reddy, and R. Raskar. Coded strobing photography: Compressive sensing of high speed periodic videos. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. J. Wang, F. Adib, R. Knepper, D. Katabi, and D. Rus. Rf-compass: robot object manipulation using rfids. In Proc. of ACM MobiCom, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. J. Wang, H. Hassanieh, D. Katabi, and P. Indyk. Efficient and reliable low-power backscatter networks. In Proc. of ACM SIGCOMM, pages 61--72. ACM, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. J. Wang and D. Katabi. Dude, where's my card?: Rfid positioning that works with multipath and non-line of sight. In Proc. of ACM SIGCOMM, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. J. Wang, D. Vasisht, and D. Katabi. Rf-idraw: virtual touch screen in the air using rf signals. In Proc. of ACM SIGCOMM, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. W. Weaver Jr, S. Timoshenko, and D. Young. Vibration problems in engineering.Google ScholarGoogle Scholar
  42. T. Wei, S. Wang, A. Zhou, and X. Zhang. Acoustic eavesdropping through wireless vibrometry. In in Proc. of ACM MobiCom, pages 130--141, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. L. Yang, Y. Chen, X.-Y. Li, C. Xiao, M. Li, and Y. Liu. Tagoram: real-time tracking of mobile rfid tags to high precision using cots devices. In Proc. of ACM MobiCom, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. L. Yang, P. Peng, F. Dang, C. Wang, X.-Y. Li, and Y. Liu. Anti-counterfeiting via federated rfid tags' fingerprints and geometric relationships. In Proc. of IEEE INFOCOM, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  45. P. Zhang, P. Hu, V. Pasikanti, and D. Ganesan. EkhoNet: high speed ultra low-power backscatter for next generation sensors. In Proc. of ACM MobiCom, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. R. Zhou, Y. Xiong, G. Xing, L. Sun, and J. Ma. Zifi: wireless lan discovery via zigbee interference signatures. In Proc. of ACM MobiCom, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Making sense of mechanical vibration period with sub-millisecond accuracy using backscatter signals

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Other conferences
        MobiCom '16: Proceedings of the 22nd Annual International Conference on Mobile Computing and Networking
        October 2016
        532 pages
        ISBN:9781450342261
        DOI:10.1145/2973750

        Copyright © 2016 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 3 October 2016

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        MobiCom '16 Paper Acceptance Rate31of226submissions,14%Overall Acceptance Rate440of2,972submissions,15%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      ePub

      View this article in ePub.

      View ePub