skip to main content
10.1145/2939672.2939830acmconferencesArticle/Chapter ViewAbstractPublication PageskddConference Proceedingsconference-collections
research-article

Transfer Knowledge between Cities

Authors Info & Claims
Published:13 August 2016Publication History

ABSTRACT

The rapid urbanization has motivated extensive research on urban computing. It is critical for urban computing tasks to unlock the power of the diversity of data modalities generated by different sources in urban spaces, such as vehicles and humans. However, we are more likely to encounter the label scarcity problem and the data insufficiency problem when solving an urban computing task in a city where services and infrastructures are not ready or just built. In this paper, we propose a FLexible multimOdal tRAnsfer Learning (FLORAL) method to transfer knowledge from a city where there exist sufficient multimodal data and labels, to this kind of cities to fully alleviate the two problems. FLORAL learns semantically related dictionaries for multiple modalities from a source domain, and simultaneously transfers the dictionaries and labelled instances from the source into a target domain. We evaluate the proposed method with a case study of air quality prediction.

References

  1. J. L. Bentley. Multidimensional binary search trees used for associative searching. Communications of the ACM, 18(9):509--517, 1975. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. J. Blitzer, S. Kakade, and D. P. Foster. Domain adaptation with coupled subspaces. In AISTATS, pages 173--181, 2011.Google ScholarGoogle Scholar
  3. T. M. Cover and J. A. Thomas. Elements of information theory. 2012.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. W. Dai, Q. Yang, G.-R. Xue, and Y. Yu. Boosting for transfer learning. In ICML, pages 193--200, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Z. Fang and Z. M. Zhang. Discriminative feature selection for multi-view cross-domain learning. In CIKM, pages 1321--1330, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. D. R. Hardoon, S. Szedmak, and J. Shawe-Taylor. Canonical correlation analysis: An overview with application to learning methods. Neural computation, 16(12):2639--2664, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. J. He and R. Lawrence. A graph-based framework for multi-task multi-view learning. In ICML, pages 25--32, 2011.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Z. Jiang, G. Zhang, and L. S. Davis. Submodular dictionary learning for sparse coding. In CVPR, pages 3418--3425, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. X. Jin, F. Zhuang, H. Xiong, C. Du, P. Luo, and Q. He. Multi-task multi-view learning for heterogeneous tasks. In CIKM, pages 441--450, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. R. Kiros, R. Salakhutdinov, and R. Zemel. Multimodal neural language models. In ICML, pages 595--603, 2014.Google ScholarGoogle Scholar
  11. M.-Y. Liu, O. Tuzel, S. Ramalingam, and R. Chellappa. Entropy-rate clustering: Cluster analysis via maximizing a submodular function subject to a matroid constraint. PAMI, 36(1):99--112, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. S. T. McCormick. Submodular function minimization. Handbooks in operations research and management science, 12:321--391, 2005.Google ScholarGoogle Scholar
  13. G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of approximations for maximizing submodular set functions. Mathematical Programming, 14(1):265--294, 1978.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. L. Nie, L. Zhang, Y. Yang, M. Wang, R. Hong, and T.-S. Chua. Beyond doctors: future health prediction from multimedia and multimodal observations. In MM, pages 591--600, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. K. Ozaki, M. Shimbo, M. Komachi, and Y. Matsumoto. Using the mutual k-nearest neighbor graphs for semi-supervised classification of natural language data. In CoNLL, pages 154--162, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. S. J. Pan and Q. Yang. A survey on transfer learning. Knowledge and Data Engineering, IEEE Transactions on, 22(10):1345--1359, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. X. Shi, Q. Liu, W. Fan, and P. S. Yu. Transfer across completely different feature spaces via spectral embedding. Knowledge and Data Engineering, IEEE Transactions on, 25(4):906--918, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. X. Song, L. Nie, L. Zhang, M. Liu, and T.-S. Chua. Interest inference via structure-constrained multi-source multi-task learning. In IJCAI, pages 2371--2377, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. N. Srivastava and R. R. Salakhutdinov. Multimodal learning with deep boltzmann machines. In NIPS, pages 2222--2230, 2012.Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. B. Tan, E. Zhong, E. W. Xiang, and Q. Yang. Multi-transfer: Transfer learning with multiple views and multiple sources. In SDM, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  21. Y. Wei, Y. Song, Y. Zhen, B. Liu, and Q. Yang. Scalable heterogeneous translated hashing. In SIGKDD, pages 791--800, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Y. Wei, Y. Zhu, C. W.-k. Leung, Y. Song, and Q. Yang. Instilling social to physical: Co-regularized heterogeneous transfer learning. In AAAI, 2016.Google ScholarGoogle Scholar
  23. D. Yang, D. Zhang, Z. Yu, and Z. Yu. Fine-grained preference-aware location search leveraging crowdsourced digital footprints from LBSNs. In UbiComp, pages 479--488, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. H. Yang and J. He. Learning with dual heterogeneity: a nonparametric bayes model. In SIGKDD, pages 582--590, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. P. Yang and W. Gao. Multi-view discriminant transfer learning. In IJCAI, pages 1848--1854, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. P. Yang, W. Gao, Q. Tan, and K.-F. Wong. Information-theoretic multi-view domain adaptation. In ACL, pages 270--274, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. P. Yang and J. He. Model Multiple Heterogeneity via Hierarchical Multi-Latent Space Learning. In SIGKDD, pages 1375--1384, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Q. Yang, Y. Chen, G.-R. Xue, W. Dai, and Y. Yu. Heterogeneous transfer learning for image clustering via the social web. In ACL, pages 1--9, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Z. Yu, F. Wu, Y. Yang, Q. Tian, J. Luo, and Y. Zhuang. Discriminative coupled dictionary hashing for fast cross-media retrieval. In SIGIR, pages 395--404, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. D. Zhang, J. He, Y. Liu, L. Si, and R. Lawrence. Multi-view transfer learning with a large margin approach. In SIGKDD, pages 1208--1216, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. J. Zhang and J. Huan. Inductive multi-task learning with multiple view data. In SIGKDD, pages 543--551, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Z. Y. Zhao, M. Xie, and M. West. Dynamic dependence networks: Financial time series forecasting and portfolio decisions. Applied Stochastic Models in Business and Industry, 2016.Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Y. Zheng, L. Capra, O. Wolfson, and H. Yang. Urban computing: concepts, methodologies, and applications. ACM Transactions on Intelligent Systems and Technology (TIST), 5(3):38, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Y. Zheng, F. Liu, and H.-P. Hsieh. U-air: When urban air quality inference meets big data. In SIGKDD, pages 1436--1444, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Y. Zheng, T. Liu, Y. Wang, Y. Zhu, Y. Liu, and E. Chang. Diagnosing new york city's noises with ubiquitous data. In UbiComp, pages 715--725, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Y. Zheng, X. Yi, M. Li, R. Li, Z. Shan, E. Chang, and T. Li. Forecasting Fine-Grained Air Quality Based on Big Data. In SIGKDD, pages 2267--2276, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Transfer Knowledge between Cities

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          KDD '16: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
          August 2016
          2176 pages
          ISBN:9781450342322
          DOI:10.1145/2939672

          Copyright © 2016 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 13 August 2016

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

          Acceptance Rates

          KDD '16 Paper Acceptance Rate66of1,115submissions,6%Overall Acceptance Rate1,133of8,635submissions,13%

          Upcoming Conference

          KDD '24

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader