skip to main content
10.1145/2934872.2934901acmconferencesArticle/Chapter ViewAbstractPublication PagescommConference Proceedingsconference-collections
research-article
Public Access

Enabling Practical Backscatter Communication for On-body Sensors

Published:22 August 2016Publication History

ABSTRACT

In this paper, we look at making backscatter practical for ultra-low power on-body sensors by leveraging radios on existing smartphones and wearables (e.g. WiFi and Bluetooth). The difficulty lies in the fact that in order to extract the weak backscattered signal, the system needs to deal with self-interference from the wireless carrier (WiFi or Bluetooth) without relying on built-in capability to cancel or reject the carrier interference.

Frequency-shifted backscatter (or FS-Backscatter) is based on a novel idea --- the backscatter tag shifts the carrier signal to an adjacent non-overlapping frequency band (i.e. adjacent WiFi or Bluetooth band) and isolates the spectrum of the backscattered signal from the spectrum of the primary signal to enable more robust decoding. We show that this enables communication of up to 4.8 meters using commercial WiFi and Bluetooth radios as the carrier generator and receiver. We also show that we can support a range of bitrates using packet-level and bit-level decoding methods. We build on this idea and show that we can also leverage multiple radios typically present on mobile and wearable devices to construct multi-carrier or multi-receiver scenarios to improve robustness. Finally, we also address the problem of designing an ultra-low power tag that can frequency shift by 20MHz while consuming tens of micro-watts. Our results show that FS-Backscatter is practical in typical mobile and static on-body sensing scenarios while only using commodity radios and antennas.

References

  1. Adxl362 mems accelerometer.Google ScholarGoogle Scholar
  2. Ettus research vert2450 antenna.Google ScholarGoogle Scholar
  3. Nxp 74hc1g00 nand gate.Google ScholarGoogle Scholar
  4. Ti cc2541.Google ScholarGoogle Scholar
  5. Tp-link tl-ant2409a antenna.Google ScholarGoogle Scholar
  6. Zephyr bioharness.Google ScholarGoogle Scholar
  7. A. Badam, R. Chandra, J. Dutra, A. Ferrese, S. Hodges, P. Hu, J. Meinershagen, T. Moscibroda, B. Priyantha, and E. Skiani. Software defined batteries. In SOSP, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. S. Bandyopadhyay, P. P. Mercier, A. C. Lysaght, K. M. Stankovic, and A. P. Chandrakasan. A 1.1 nw energy-harvesting system with the pw quiescent power for next-generation implants. JSSC, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  9. D. Bharadia, K. R. Joshi, M. Kotaru, and S. Katti. Backfi: High throughput wifi backscatter. In SIGCOMM, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. W. Bierman. The temperature of the skin surface. Journal of the American Medical Association, 1936.Google ScholarGoogle ScholarCross RefCross Ref
  11. J. I. Choi, M. Jain, K. Srinivasan, P. Levis, and S. Katti. Achieving single channel, full duplex wireless communication. In Mobicom, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. F. C. Commission. Fcc part 15.247.Google ScholarGoogle Scholar
  13. J. F. Ensworth and M. S. Reynolds. Every smart phone is a backscatter reader: Modulated backscatter compatibility with bluetooth 4.0 low energy (ble) devices. In RFID. IEEE, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  14. S. Farzeen, G. Ren, and C. Chen. An ultra-low power ring oscillator for passive uhf rfid transponders. In Circuits and Systems (MWSCAS), 2010 53rd IEEE International Midwest Symposium on, pages 558–561. IEEE, 2010.Google ScholarGoogle Scholar
  15. L. M. Feeney, C. Rohner, P. Gunningberg, A. Lindgren, and L. Andersson. How do the dynamics of battery discharge affect sensor lifetime? In 11th Annual Conference on Wireless On-demand Network Systems and Services, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  16. K. Furset and P. Hoffman. High pulse drain impact on cr2032 coin cell battery capacity.Google ScholarGoogle Scholar
  17. S. Gollakota, F. Adib, D. Katabi, and S. Seshan. Clearing the rf smog: making 802.11 n robust to cross-technology interference. SIGCOMM, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. S. Gollakota and D. Katabi. Zigzag decoding: combating hidden terminals in wireless networks. In SIGCOMM, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. S. Gollakota, M. S. Reynolds, J. R. Smith, and D. J. Wetherall. The emergence of rf-powered computing. Computer, 47(1):32–39, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. J. Gummeson, P. Zhang, and D. Ganesan. Flit: a bulk transmission protocol for rfid-scale sensors. In MobiSys, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. D. Halperin, T. Anderson, and D. Wetherall. Taking the sting out of carrier sense: interference cancellation for wireless lans. In Mobicom, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. M.-t. Hsieh and G. E. Sobelman. Comparison of lc and ring vcos for plls in a 90 nm digital cmos process. Proceedings, Int. SoC, 2006.Google ScholarGoogle Scholar
  23. P. Hu, P. Zhang, and D. Ganesan. Leveraging interleaved signal edges for concurrent backscatter. In HotWireless, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. P. Hu, P. Zhang, and D. Ganesan. Laissez-faire: Fully asymmetric backscatter communication. In SIGCOMM, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. P. Hu, P. Zhang, M. Rostami, and D. Ganesan. Braidio: An integrated active-passive radio for mobile devices with asymmetric energy budgets. In SIGCOMM, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. V. Iyer, V. Talla, B. Kellogg, S. Gollakota, Shyam, and Josh. Interscatter: Towards internet connectivity for medical implants. In SIGCOMM, 2016.Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. M. Jain, J. I. Choi, T. Kim, D. Bharadia, S. Seth, K. Srinivasan, P. Levis, S. Katti, and P. Sinha. Practical, real-time, full duplex wireless. In Mobicom, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. P. Kamalinejad, K. Keikhosravy, R. Molavi, S. Mirabbasi, and V. Leung. An ultra-low-power cmos voltage-controlled ring oscillator for passive rfid tags. In 12th International New Circuits and Systems Conference, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  29. S. Katti, H. Rahul, W. Hu, D. Katabi, M. Médard, and J. Crowcroft. Xors in the air: practical wireless network coding. In SIGCOMM, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. B. Kellogg, A. Parks, S. Gollakota, J. R. Smith, and D. Wetherall. Wi-fi backscatter: internet connectivity for rf-powered devices. In SIGCOMM, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. B. Kellogg, V. Talla, S. Gollakota, and J. R. Smith. Passive wi-fi: bringing low power to wi-fi transmissions. In NSDI, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. K. K. Lee, K. Granhaug, and N. Andersen. A study of low-power crystal oscillator design. In NORCHIP, 2013, pages 1–4. IEEE, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  33. K. C.-J. Lin, N. Kushman, and D. Katabi. Ziptx: Harnessing partial packets in 802.11 networks. In Mobicom, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. V. Liu, A. Parks, V. Talla, S. Gollakota, D. Wetherall, and J. R. Smith. Ambient backscatter: wireless communication out of thin air. In SIGCOMM, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. V. Liu, V. Talla, and S. Gollakota. Enabling instantaneous feedback with full-duplex backscatter. In Mobicom, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. P. P. Mercier, A. C. Lysaght, S. Bandyopadhyay, A. P. Chandrakasan, and K. M. Stankovic. Energy extraction from the biologic battery in the inner ear. Nature biotechnology, 30(12):1240–1243, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  37. P. V. Nikitin and K. Rao. Antennas and propagation in uhf rfid systems. challenge, 22:23, 2008.Google ScholarGoogle Scholar
  38. P. V. Nikitin, K. S. Rao, S. F. Lam, V. Pillai, R. Martinez, and H. Heinrich. Power reflection coefficient analysis for complex impedances in rfid tag design. IEEE Transactions on Microwave Theory and Techniques, 53(9):2721–2725, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  39. A. Pantelopoulos and N. G. Bourbakis. A survey on wearable sensor-based systems for health monitoring and prognosis. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, 40(1):1–12, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. S. Park, C. Min, and S. Cho. A 95nw ring oscillator-based temperature sensor for rfid tags in 0.13$μ$m cmos. In Circuits and Systems, 2009. ISCAS 2009. IEEE International Symposium on, pages 1153–1156. IEEE, 2009.Google ScholarGoogle Scholar
  41. A. N. Parks, A. Liu, S. Gollakota, and J. R. Smith. Turbocharging ambient backscatter communication. In SIGCOMM, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. D. M. Pozar. Microwave engineering. John Wiley & Sons, 2009.Google ScholarGoogle Scholar
  43. G. Qu and C.-E. Yin. Temperature-aware cooperative ring oscillator puf. In Hardware-Oriented Security and Trust, 2009. HOST'09. IEEE International Workshop on, pages 36–42. IEEE, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. K. S. Rao, P. V. Nikitin, and S. F. Lam. Impedance matching concepts in rfid transponder design. In Automatic Identification Advanced Technologies, 2005. Fourth IEEE Workshop on, pages 39–42. IEEE, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. A. P. Sample, D. J. Yeager, P. S. Powledge, A. V. Mamishev, and J. R. Smith. Design of an rfid-based battery-free programmable sensing platform. Instrumentation and Measurement, IEEE Transactions on, 57(11):2608–2615, 2008.Google ScholarGoogle Scholar
  46. F. Song, J. Yin, H. Liao, and R. Huang. Ultra-low-power clock generation circuit for epc standard uhf rfid transponders. Electronics Letters, 44(3):199–201, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  47. V. Talla, B. Kellogg, B. Ransford, S. Naderiparizi, S. Gollakota, and J. R. Smith. Powering the next billion devices with wi-fi. In CoNext, 2015.Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. J. Wang, H. Hassanieh, D. Katabi, and P. Indyk. Efficient and reliable low-power backscatter networks. In SIGCOMM, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. D. Yeager, F. Zhang, A. Zarrasvand, N. T. George, T. Daniel, and B. P. Otis. A 9 a, addressable gen2 sensor tag for biosignal acquisition. Solid-State Circuits, IEEE Journal of, 45(10):2198–2209, 2010.Google ScholarGoogle Scholar
  50. M. Yip, R. Jin, H. H. Nakajima, K. M. Stankovic, and A. P. Chandrakasan. A fully-implantable cochlear implant soc with piezoelectric middle-ear sensor and arbitrary waveform neural stimulation. JSSC, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  51. P. Zappi, C. Lombriser, T. Stiefmeier, E. Farella, D. Roggen, L. Benini, and G. Tröster. Activity recognition from on-body sensors: accuracy-power trade-off by dynamic sensor selection. In Wireless sensor networks, pages 17–33. Springer, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. P. Zhang and D. Ganesan. Enabling bit-by-bit backscatter communication in severe energy harvesting environments. NSDI, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. P. Zhang, D. Ganesan, and B. Lu. Quarkos: Pushing the operating limits of micro-powered sensors. In HotOS, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. P. Zhang, J. Gummeson, and D. Ganesan. Blink: A high throughput link layer for backscatter communication. In MobiSys, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. P. Zhang, P. Hu, V. Pasikanti, and D. Ganesan. Ekhonet: high speed ultra low-power backscatter for next generation sensors. In Mobicom, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Enabling Practical Backscatter Communication for On-body Sensors

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        SIGCOMM '16: Proceedings of the 2016 ACM SIGCOMM Conference
        August 2016
        645 pages
        ISBN:9781450341936
        DOI:10.1145/2934872

        Copyright © 2016 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 22 August 2016

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        SIGCOMM '16 Paper Acceptance Rate39of231submissions,17%Overall Acceptance Rate554of3,547submissions,16%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader